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Majorana modes

They are real and imaginary
{w?‘ : ﬁs} = 20,;0,5 parts of a creation operator.

Can be realized in systems with interactions

H = Z (c cjr1+ cﬁlcj) A(cjcjpr + c;r-ﬂc}) — ;uc;f-cj A. Yu. Kitaev (2001)

=0, t= |A| Fermionic quantum computation, Annals of
Physics, Vol. 298, Iss. 1 (2002) pp.210-226
N—1
H = —it Z VB, VA j+1 Majorana fermion codes, Bravyi, Terhal,

Leemhuis, New J. Phys. 12, 083039 (2010)

YA,1, YB,N --drop out from Hamiltonian and allow us to form an artificial fermion.

Q@ O ¢ Gmecemm @ At low energies, the whole wire

Ya1 VB Ya2 VB2 Va3 78,3 YaN 7B N behaves as one fermion.

J. Alicea, Y. Oreg, G. Refael, F. von Oppen & M.
P. A. Fisher Nature Physics 7, 412-417 (2011)



Measurement and coupling via Aharonov-Casher
effect

Hassler, Akhmerov, Hou, Beenakker,
NJP 12, 125002 (2010)

Bonderson, Lutchyn,

Phys. Rev. Lett. 106, 130505 (2011)
Jiang, Kane, Preskill

Phys. Rev. Lett. 106, 130504 (2011)

Majorana wire  semiconductor
network double-dot qubit



Networks of parafermion wires

v=1/m g>0* Braiding properties:

v Parafermions 71 _> e’LkQTF/D

Y2 v Y1 7772
nsulator 2
. s sC Yo — 61(1 k)27r/D’}/1’)/2 Yo — —V1

parafermions majoranas

Clarke, Alicea, Shtengel, Nature Commun. 4, 1348 (2013)

Networks of parafermion wires can be used to obtain
Fibonachi anyons.

Spin unpolarized v = 2/3
y=1
| Ay (D) [y (DR Ay (D) | g (1) | 24 (1) [ ()]
=2 f2¢/3
o 202) [mim @ 22) | (@) [ 7@ [ @)

Mong, Clarke, Alicea, Lindner, Fendley, Nayak,
! - ! ! 1 — Oreg, Stern, Berg, Shtengel, Fisher,
1 ! ! L L Phys. Rev. X4, 011036 (2014)




Qudit stabilizer codes

Let us consider generalized Pauli group: 2, = w™{I, XY, Z}®", m =0,...,.D —1

__ 2mi/D
XP=7P =1, ZX=wXZ w=e¢e
D—1 D—1
X=> i+, 2Z=)> i)
3=0 7=0

An [[n, k, d]] stabilizer code Q is a D*-dimensional subspace of the Hilbert
space HE" stabilized by an Abelian stabilizer group . = (G, ..., Gn_k),
L/ &7 Q={|[¢): S[Y) = |¢),¥5 € S}

Since the code is stabilized by the stabilizer group (syndrome measurements)
we actually measure errors but not the stored information.

Since errors are measured by Pauli operators, any non-Pauli error is projected to
a Pauli one -> Itis sufficient to treat only Pauli errors.

E. M. Rains, IEEE Trans. Inf. Theor. 45, 1827 (1999); A. Ashikhmin and E. Knill,
IEEE Trans. Inf. Theor. 47, 3065 (2001); D. Schlingemann and R. F. Werner,
Phys. Rev. A 65, 012308 (2001).



Qudit codes: matrix representation

Pauli operators are mapped to two strings, v,u € {0,D — 1}, U = w™ XVZ" — (v,u),
where XV = X' X52.. X and Z" = Z" Z3*...Z'". A product of two quantum operators
corresponds to a sum (mod D) of the corresponding pairs (v;, u;).

In this representation, a stabilizer code is represented by parity check matrix written in binary
form for X and Z Pauli operators so that, e.g. XIYZYI=-(XIXIXI)x(l1ZZZl) -> (101010) | (001110).

Ax Az
11 0 O0O0/00-1 0-1
H= 011 00|11 0 0-1 0 | Example of a parity check matrix H of
1001 10|0-1 0 0- |[][[51,3]] code written in X-Z form.
O 0OO0O1 1|1 01 0O

Necessary and sufficient condition for existence of stabilizer
code with stabilizer commuting operators corresponding to H.

Ax AL = Az A% (modD)

(z]z) ® (z’|gj,)T — o/t T Row orthogonality with respect to symplectic product.

Parity check matrix for a Gyx| O
Calderbank-Shor-Steane (CSS) code: H = ( 0 ‘GZ

) . GxGL = 0 = commutativity



Qudit codes: error correction

1. Measure stabilizer generators to obtain syndrome of error E € 7 & ET

2. Correct error according to syndrome.

* The correctable error set Ecis defined by:  * The detectable error set Ed is defined by:

If E; and E, are in Ec, then one of the If E is in Ed, then one of the two
two conditions hold: conditions hold:

1. E;El ¢ H,\.& distincterror syndromes 1. £ ¢ H,\.% distincterror syndromes

2. E;El € . degenerate code 2. F e degenerate code
110000000\ By By (o
. " - T _ |-
Syndrome of (//1Y1) error: 00110l04100-]l® (00010|00010) 1
O 0OO0O1 1|1 01 0O -1

The distance of a quantum stabilizer code is defined as the minimal weight of
all undetectable errors, i.e. Hamming weight of EF'x V E»



Jordan-Wigner transformation

XP =z7P =1, ZX =wXZ

—1 D—1
X=>Yli+04l, Z2=) <)l
Jj= J=0
Tensor products of qudit Pauli operators can be mapped to tensor products of
parafermion operators by employing the Jordan-Wigner transformation.

i1 ¥
Y21 = (H Xk) Zj,
k=1

7—1
75 = w!PTI (H Xk) ZjX;

k=1

Commutativity relations imply non-local character of parafermion operators.

WEL ym=ewy <k w=e?P)



From quantum clock model to parafermion codes

n—1
Hy =—J Z(Z;[Zj—i—l + ZJTHZJ') Three state clock model with h=0
Jj=1

Fendley, arXiv:1209.0472

Apply Jordan-Wigner transformation:

n—1

H=1J Z(’ng’mj—kl — ’Y;Lj+1'72j)
71=1

This Hamiltonian corresponds to the sum of commuting operators.
The code space is stabilized by the Abelian group generated from this set.

<7’7;(’)/37 7’71’757 """" ’ irV%Ez—ZWZn—l)

In the absence of parity breaking interactions this code protects against local errors.

Logical operators can be identified as



Parafermion stabilizer codes

We consider tensor products of parafermion operators corresponding to 2n modes
and denote this group by PF (D, 2n)

Parafermion stabilizer codes Cgs,. .., similar to qudit stabilizer codes, are
completely determined by their corresponding stabilizer group, which
in our case is Spr C PF(D,2n). We list the defining properties of
parafermion stabilizer codes as:

e Elements of Spr are parity-preserving operators.
e Spr is an Abelian group not containing w’1 where j € Zp and j # 0.

e [[n, k,d]] code is a D¥ dimensional subspace stabilized by
the stabilizer group.

The parity condition can be also written as commutativity with the charge operator:

n
Q = H 'Y;rj—l”)’zj

=1

The code protects against low weight errors (low weight tensor products of parafermions)!



Parafermion codes: matrix representation

Arbitrary elements of PF(D, 2n) can be written as w*y® where A € Zp and
v =7 oye? with a = (aq, ..., q9,) € Z9" and by convention the terms
are arranged in increasing order in their indices.

We use a matrix representation of Spp = (51,...,5;) = (v**,...,v*) whose
rows are given by «;, that is

o 11 0 -1 0 100
| Spr=|0 -1 1 0 =1 0 10

Spr=| 0 0 -1 1 0 —-101
(879

Example of a parity check matrix of
[[8,1,3]] parafermion code for D=3.

G AST 4D Necessary and sufficient condition for existence of stabilizer
prASpp =0 mo code with stabilizer commuting operators corresponding to Spr

0 1 1. 1\ For [[n,k,d]] code k = n —rankSpp
-1 0 1... 1 . o
Where A— |-1 -1 0... 1| L(Spr)=C(Spr)\Spr d= ol 7|

\_'1 1.1 0/ Lpr is the matrix form of L(Spr)




Mapping from parafermion to qudit code

Lemma Any parafermion stabilizer code with parameters |[2n,k,d]|p and
stabilizer group Spr can generate a [[2n,2k,d’||p qudit CSS code.

Proof. Consider the check matrix

SprA 0
Scss = 0 Spp

For a parafermion code, k = n — rank(Spg) whereas for the CSS code
kK =2n — 2 x rank(Spp) = 2k (A is full-rank matrix). Hence Scgg is the
check matrix of a [[2n, 2k, d’|] CSS code.

The corresponding logical operator matrices Lpr and LpgpA, behave like
X- and Z-type logical qudit operators.

For D = 2 this procedure maps a Majorana fermion code to weakly self-dual
CSS code. Unfortunately, for D > 2 this mapping becomes non-local, i.e.,
a local qudit operator will generally map to a non-local parafermion operator.

For D=2 this mapping is given in Bravyi, Terhal, Leemhuis, New J. Phys. 12, 083039 (2010)



Mapping from qudit to parafermion code

Lemma FEvery [[n, k,d||p stabilizer code can be mapped onto a [[4n, k,2d]]p
parafermion stabilizer code, encoding 4 parafermion modes into a single qudit.

Proof. Let us define the operators

~ ~

L1 = ’)/I+4j’)/2—|-4ja Xjt1 = ’Yir+4j’)/3+4j

Qj+1 = ’YI+4j’Yz+4j’Y:1,L+4j’Y4+4j

It is straightforward to show that (X' Z j) generate the embedded Weyl
group WS* C PF(D, 2n) (that is, Z;X; = wX;Z;6;; and XD ZD = 1)

and are parity-preserving. We can treat £(Spr) = (X, s Z 3) as the logical
operators of a stabilizer group Spr = (Q;). This makes the purpose of the
additional fourth mode (which does not appear in the logical operators) clear:
without it, the stabilizer group would include a non-parity-preserving operator.
Finally, since every Weyl operator is mapped to a parafermion operator with
two modes, the distance of the new code is 2d.



Parafermion toric code

N

Parafermion code is constructed by designating 4
qudit of original code.

X
X = ")/I+4j’73+4j
Xt
Zjy1 = ’)/I+4j72+4j
Al

~

Al

parafermion modes to each



Zo charge conservation and error model

Zo charge (parity) breaking errors are less likely to occur (ideally do not occur at all).

Thus it makes sense to define code distance with respect to errors that conserve Zo charge.
This is only relevant to codes containing logical operators not conserving Zo charge.

In addition, one can define distance with respect to errors not conserving Zo charge.

The mapping form qudit codes to parafermion codes presented earlier will only result
in codes with no logical operators violating Zo charge.

Thus it makes sense to construct parafermion codes directly without employing
the mapping

For local errors one can also define the radius of logical operators preserving Zo charge.

lcon — min diam|Su @
cmin [Supp(7*)]
>, ;=0 mod D

n—1

Generalization of Kitaev’s model . s oy |
leadsto [.on = 2n H=1J 2:1(72j723+1 72j+1723)
J:



Non-prime D case

Theorem Let Spr be a parafermion stabilizer code in PF(D,2n) where
D is allowed to be composite, let |Spr| denote the order of Spr and let |Cs, .|
be the dimension of codespace. Then the following equation holds:

CsprllSpr| = D"
For qudit codes: A. Ashikhmin and E. Knill, IEEE Trans. Inform. Theory 47, 3065 (2001)

Let D = p? where p is a prime number and [ € Z+. The operators

~ pl—1 N pl—1

Zjt1 =V14a5724450 X4l = Viga; V3445

Q@j+1 :71[+4j’7/;r+4j’73+4j’74+4j-
define a mapping of four parafermion modes onto a single qudit via the
one-qudit stabilizer group Spr = (Q);) and its corresponding logical operators

L(Spr) = (X, Z)).



Mapping from qudits allowing odd logical

operators

- _ A,

X = ':"'110;4;']"'3+4j N

L ] L ] X

& & J\"?—l
IXl
L g & L & B *
. [ * > pl—1 ' ® 4 »7—1
Z = T144572+45 Z:l Z

The parity of the horizontal (vertical) logical operators of the parafermion
toric code is a x p' (b x p') mod D.




Conclusions

We define parafermion stabilizer codes which can be thought of as
generalizations of Kitaev’s chain model

Local parafermion codes in general do not correspond to local qudit
codes

We construct parafermion toric code with adjustable protection
against parity violating errors

What can be said about finite temperature behavior?
i.e. 1D Kitaev’s chain — topological order at T=0,
what about local models in 2D and 3D at T>0?



