Stabilizer Codes for Prime Power Qudits Daniel Gottesman Perimeter Institute

Qubit Pauli and Clifford Groups

A qubit stabilizer S is an Abelian subgroup of $P_{n,2}$ which does not contain -I. The code space corresponding to S is

 $\{|\psi\rangle|M|\psi\rangle=|\psi\rangle \forall M\in S\}$

Example: 5-qubit code [[5,1,3]]

Х	Ζ	Ζ	Х	I
I	Х	Ζ	Ζ	Х
Х	I	Х	Ζ	Ζ
Ζ	Х	Ι	Х	Ζ

n physical qubits r = n-k stabilizer generators M₁, ..., M_r k logical qubits Other elements of S are products

of generators.

E.g.: $Z Z X I X = M_1 M_2 M_3 M_4$ for 5-qubit code

Error syndrome:

 $s(P) = \{c(M_1,P), c(M_2,P), ..., c(M_r,P)\} \in (Z_2)^r$ E.g., for 5-qubit code, $s(Y_3) = 1110$

Prime Dimension Pauli and Clifford

A qudit stabilizer S is an Abelian subgroup of $P_{n,p}$ which does not contain ωI . The code space corresponding to S is

 $\{|\psi\rangle|M|\psi\rangle=|\psi\rangle \forall M\in S\}$

Example: 5-qudit code [[5,1,3]]_P

Х	Ζ	Z-I	X-I	Ι
I	Х	Ζ	Z-I	X-I
X-I	Ι	Х	Ζ	Z-I
۲-۱	X-I	I	Х	Ζ

n physical qudits r = n-k stabilizer generators M_I, ..., M_r k logical qudits

Other elements of S are products of generators, including powers 1, ..., p-1

E.g.:
$$Z Z^{-1} X^{-1} I X = M_1^{-1} M_2^{-1} M_3^{-1} M_4^{-1}$$

Error syndrome:

$$s(P) = \{c(M_1, P), c(M_2, P), ..., c(M_r, P)\} \in (Z_p)^r$$

E.g., for 5-qubit code, $s(X_3Z_3) = (1, -1, 1, 0)$

For composite qudit dimension q, we can do this too, using the same Pauli group (often known as the Heisenberg-Weyl group).

This is workable, but the stabilizer codes derived this way lack some of the standard structure of stabilizer codes for prime-dimensional qudits.

$$\begin{array}{l} X^{\mathbf{b}} |\mathbf{v}\rangle = |\mathbf{v} + \mathbf{b}\rangle \\ Z^{\mathbf{c}} |\mathbf{v}\rangle = \omega^{\mathbf{c} \cdot \mathbf{v}} |\mathbf{v}\rangle \\ \omega = e^{2\pi i / q} \\ c(X^{\mathbf{b}} Z^{\mathbf{c}}, X^{\mathbf{b}}, Z^{\mathbf{c}'}) = \\ \mathbf{b} \cdot \mathbf{c}' - \mathbf{b}' \cdot \mathbf{c} \\ \mathbf{b}, \mathbf{c} \in (Z_q)^n \\ a \in Z_q \end{array}$$

For instance, not all elements of $P_{n,q}$ are equivalent (some have different orders), and there is no simple relationship between the number of generators of S and the number of logical qudits. There also do not need to be an integral number of qudits.

When $q=p^m$, it is better to use an alternate Pauli group based on the finite field of size q.

Finite Fields

A field has Abelian addition and multiplication rules, including 0, 1, additive and multiplicative inverses, and a distributive law.

Familiar examples of infinite fields are rationals, reals, & complex #s. The simplest finite fields are Z_P , mod p arithmetic for prime p.

For any $q = p^m$, there exists a unique finite field GF(q) of size q. Such a field can be constructed by taking Z_p and adjoining the roots of irreducible polynomials.

GF(q) has characteristic p, meaning any element added p times gives 0. Example: $GF(9) = Z_3(\alpha),$ $\alpha^2 + \alpha + 2 = 0$ Elements are 0, 1, 2, α , α +1, α +2, 2 α , 2 α +1, 2 α +2 E.g., $\alpha(2\alpha+1) = 2\alpha^2 + \alpha$ $= 2(-\alpha-2) + \alpha = 2\alpha+2$

Z_p Versus GF(p^m)

GF(q), $q=p^m$ can be viewed as a vector space over Z_p : pick m independent adjoining elements $\alpha_1, ..., \alpha_m$. Then the elements of GF(q) can all be written in the form $\sum_i c_i \alpha_i$, with $c_i \in Z_p$.

$$GF(q) = (Z_p)^m$$

Tr V_p
 Z_p

The trace can be used to reduce elements of GF(q) to elements of Z_p :

$$tr x = x + x^{p} + x^{p^{2}} + ... + x^{p^{m-1}}$$

Properties of trace:

I. tr
$$\alpha \in Z_p$$

2. tr $(\alpha + \beta) = \text{tr } \alpha + \text{tr } \beta$
3. tr $(\alpha^p) = \text{tr } \alpha$
4. tr $(a\beta) = a \text{ tr } \beta$ (for $a \in Z_p$)

"Standard" Pauli Group for q=p^m

$$P_{n,q} = \{ ω^c X^α Z^β \}$$

α, β ∈ GF(q)ⁿ, c ∈ Z_P

$$X^{\alpha} | \mathbf{\gamma} \rangle = | \mathbf{\gamma} + \mathbf{\alpha} \rangle$$
$$Z^{\beta} | \mathbf{\gamma} \rangle = \omega^{\mathrm{tr} \beta \cdot \mathbf{\gamma}} | \mathbf{\gamma} \rangle$$

For qudits of dimension $q=p^m$, the current preferred definition of the Pauli group takes advantage of the trace to allow the exponents of X and Z to be elements of GF(q), but the phase is still drawn from Z_p . Commutation can also be determined via tr:

$$c(X^{\alpha} Z^{\beta}, X^{\alpha'} Z^{\beta'}) = tr \alpha \cdot \beta' - \alpha' \cdot \beta$$

However, this definition of $P_{n,q}$ is isomorphic to $P_{mn,p}$. That is, we actually have a p-dimensional Pauli group:

Given basis { $\alpha_1, ..., \alpha_m$ } for GF(q) over Z_p , choose a dual basis { $\beta_1, ..., \beta_m$ } with the property tr ($\alpha_i \beta_j$) = δ_{ij} .

Then let $\alpha = \sum_i a_i \alpha_i$ and $\beta = \sum_j b_j \beta_j$, so we can interpret

 $\begin{array}{l} X^{\alpha} = X^{a}_{1} \otimes X^{a}_{2} \otimes ... \otimes X^{a}_{m} & & & \\ Z^{\beta} = Z^{b}_{1} \otimes Z^{b}_{2} \otimes ... \otimes Z^{b}_{m} & & & & \\ \end{array} \begin{array}{l} f = \int f \left(f \right) \left(f \right$

"Standard" Stabilizers for q=p^m

Consequently, if stabilizers are defined in the usual way from this Pauli group $P_{n,q}$, they are equivalent to mn-qudit stabilizers for p-dimensional qudits.

Example: 5-qudit code [[5,1,3]]9

n physical qudits r stabilizer generators $M_1, ..., M_r$ k = n-r/m logical qudits

Other elements of S are products of generators, including powers 1, ..., p-1. Powers of α (for GF(9)) require additional generators.

Error syndrome still a Z_P vector

Error syndrome:

 $s(P) = \{c(M_1,P), c(M_2,P), ..., c(M_r,P)\} \in (Z_P)^r$

True GF(q) Stabilizer Codes

Note the example 5-qudit code has an extra symmetry as do most other interesting GF(q) stabilizer codes. In the symplectic representation, it is GF(q)-linear, not just Z_p -linear:

I	0	0	-1	0	0	Ι	-1	0	0
α	0	0	-X	0	0	α	-X	0	0
0	I	0	0	-	0	0	I	-	0
0	α	0	0	-X	0	0	α	-X	0
-	0	Ι	0	0	0	0	0	I	-1
-α	0	α	0	0	0	0	0	α	-X
0	-1	0	I	0	-1	0	0	0	Ι
0	-X	0	α	0	-α	0	0	0	α

However, since each generator can have an independent phase, so there is no clear meaning of the "multiplication by α " symmetry in the Pauli group $P_{n,q}$. It should mean "exponentiation by α " but that is not a well-defined operation.

Lifted Pauli Group (Odd q)

We want to lift the Pauli group to a larger group where exponentiation by elements of GF(q) is well-defined. We expand the set of possible phases to be all elements of GF(q):

$$\begin{split} \dot{P}_{n,q} &= \{ \omega^{\mu} X^{\alpha} Z^{\beta} \} \qquad \boldsymbol{\alpha}, \boldsymbol{\beta} \in GF(q)^{n}, \ \boldsymbol{\mu} \in GF(q) \\ (\omega^{\mu} X^{\alpha} Z^{\beta})(\omega^{\mu'} X^{\alpha'} Z^{\beta'}) &= \omega^{\mu+\mu' \cdot \alpha' \cdot \beta} X^{\alpha+\alpha'} Z^{\beta+\beta'} \end{split}$$

$$c(X^{\alpha} Z^{\beta}, X^{\alpha'} Z^{\beta'}) = \alpha \cdot \beta' - \alpha' \cdot \beta \in GF(q)$$

We can project an element of the lifted Pauli group back to the regular Pauli group by using tr on the phase:

Exponentiation (Odd q)

Note that this formula reduces to the correct one for $\gamma \in Z_p$. Exponentiation satisfies other standard properties:

- I. P^γ P^δ = P^{γ+δ} 2. (P^γ)^δ = P^{γδ}
- 3. $P^{\gamma}Q^{\gamma} = (PQ)^{\gamma}$ when c(P,Q)=0

new phase term giving phase accumulation from "reorganizing" X and Z powers

Because of the 1/2 that appears in the definition of exponentiation, this only works for odd q.

Pauli Group Vs. Lifted Pauli Group

Exponentiation in $\dot{P}_{n,q}$ lets us group together operators in $P_{n,q}$ whose symplectic representations are related by GF(q) multiplication:

This single element is enough to generate all of the others, which correspond to m independent elements of $P_{n,q}$. The single phase ω^{μ} ($\mu \in GF(q)$) gives the m independent phases ω^{a} ($a \in Z_{p}$).

There is a unique correspondence $P \in \dot{P}_{n,q}$ to $\{\Pi P^{\gamma}\} \subset P_{n,q}$.

Lifted Stabilizers

S is a lifted stabilizer if S is an Abelian subgroup of $\dot{P}_{n,q}$ closed under exponentiation (i.e., $P \in S \Rightarrow P^{\gamma} \in S \forall \gamma \in GF(q)$), with $\omega^{\mu} \notin S$.

Thm.: The lifted stabilizers are in one-to-one correspondence with the true GF(q) stabilizers.

Generalized eigenvalues: $|\psi\rangle$ is a generalized eigenvector of $P\in \dot{P}_{n,q}$

if it is an eigenvector of $P^{\gamma} \forall \gamma \in GF(q)$. If it has eigenvalue $\omega^{a_{i}}$ for P^{γ}_{i} , then the generalized eigenvalue is ω^{μ} s.t. tr $(\gamma_{i}\mu) = a_{i}$ for all i.

The codewords are the generalized ω^0 eigenvectors of the elements of the lifted stabilizer, and an error E alters the generalized eigenvalues, so the error syndrome is the GF(q) vector of generalized eigenvalues after E, given by c(E, M_i) for generators M_i of the lifted stabilizer.

True GF(q) Clifford Group

Consider $\dot{C}_{n,q}$, the group of automorphisms of $\dot{P}_{n,q}$ that fix pure phases (i.e. $U(\omega^{\mu}) = \omega^{\mu}$).

Elements of $\dot{C}_{n,q}$ preserve exponentiation: $U(P^{\gamma}) = [U(P)]^{\gamma}$ as well as preserving commutation relations like the regular Clifford group.

$$U \in \dot{C}_{n,q}$$
$$\prod_{U' \in C_{n,q}}$$

 $\Pi U(P) = U' (\Pi P) \text{ for } U' \text{ s.t.}$ $U'(\gamma \mathbf{x} | \gamma \mathbf{z}) = \gamma U' (\mathbf{x} | \mathbf{z}) \text{ in the symplectic representation}$

 $\dot{P}_{n,q}$ can be interpreted as a subgroup of $\dot{C}_{n,q}$ (inner automorphisms), and $\dot{C}_{n,q}$ / $\dot{P}_{n,q}$ = Sp(2n,GF(q))

With help from Greg Kuperberg

For the qubit Pauli group, the phase is a power of i, a 4th root of unity, rather than of a pth root of unity. To lift the phase properly, we need a way to lift Z_4 to include elements of GF(2^m).

Define a ring $W_2(q)$ as follows, for $q=2^m$:

- Elements have the form $\alpha = \alpha_1 + 2\alpha_2$, with $\alpha_1, \alpha_2 \in GF(q)$
- α + β = (α_1 + β_1) + 2(α_2 + β_2 + $\sqrt{\alpha_1\beta_1}$)
- $\alpha\beta = (\alpha_1\beta_1) + 2(\alpha_1\beta_2 + \alpha_2\beta_1)$

Square root is uniquely defined in a field of characteristic 2.

Let $F(\alpha) = (\alpha_1)^2 + 2 (\alpha_2)^2$ and let tr $\alpha = \sum_{r=0}^{m-1} F^r(\alpha)$. Then tr $\alpha \in W_2(2) = Z_4$.

 $W_2(q)$ is the ring of truncated Witt vectors, although with non-universal addition and multiplication rules.

Lifted Pauli Group (Even q)

For even q, we let the phase and the exponents of X and Z be from $W_2(q)$ to define the lifted Pauli group:

$$\begin{split} \dot{P}_{n,q} &= \left\{ i^{\mu} X^{\alpha} Z^{\beta} \right\} & \alpha, \beta \in W_{2}(q)^{n}, \mu \in W_{2}(q) \\ (i^{\mu} X^{\alpha} Z^{\beta})(i^{\mu'} X^{\alpha'} Z^{\beta'}) &= i^{\mu+\mu'-2\alpha'\cdot\beta} X^{\alpha+\alpha'} Z^{\beta+\beta'} \\ c(X^{\alpha} Z^{\beta}, X^{\alpha'} Z^{\beta'}) &= \alpha \cdot \beta' - \alpha' \cdot \beta \\ but P and Q commute if 2c(P,Q) &= 0 \end{split}$$

Projection Π ($i^{\mu} X^{\alpha} Z^{\beta}$) = $i^{tr \mu} X^{\alpha} Z^{\beta}$

Exponentiation: for $\gamma \in W_2(q)$,

$$(i^{\mu} X^{\alpha} Z^{\beta})^{\gamma} = i^{\gamma \mu} \cdot \gamma(\gamma \cdot I)^{\alpha} \cdot \beta X^{\gamma \alpha} Z^{\gamma \beta}$$

Notice that the 1/2 in the phase has been absorbed by the i. $i^{\mu} X^{\alpha} Z^{\beta}$ is Hermitian if $2\mu = 2 \alpha \cdot \beta$

Lifted Stabilizers, Cliffords (Even q)

The rest of the construction is similar, with one exception:

Lifts are no longer unique

Thus:

- One lifted Pauli P corresponds to { ΠP^{γ} }, but a set { ΠP^{γ} } corresponds to some Pauli for any α_2 , β_2 .
- A lifted stabilizer S corresponds to a true GF(q) stabilizer S'= Π S, but more than one S corresponds to the same S'.
- Automorphisms of $\dot{P}_{n,q}$ correspond to Clifford group elements that are GF(q)-linear in the symplectic representation, but non-uniquely.

(Fine print: these constructions generally require Hermitian elements of $\dot{P}_{n,q}$.)

Summary and Future Outlook

The lifted Pauli groups provide a way to define stabilizer codes for prime power qudits that:

- Have the natural GF(q) symmetry that one expects when dealing with codes on GF(q) registers
- Encode n-r logical qudits with r generators
- \bullet Correctly organize error syndrome information into vectors over $\mathsf{GF}(q)$

The mathematical context:

- The construction provides an unusual context in which one can define exponentiation
- $W_2(q)$ and related ideas may be helpful understanding other puzzles relating to stabilizers and the Clifford group (e.g., magic states)