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Hadamard H |x〉= ∑y (-1)xy |y〉
Phase P |x〉= ix |x〉
CNOT |x, y〉= |x, x+y〉

Qubit Pauli and Clifford Groups

Pauli group Pn,2

Symplectic 
representation (Z2)2n

discard 
phase

ia Xb Zc

(b|c)

Xb |v〉= |v+b〉
Zc |v〉= (-1)c·v|v〉

b, c ∈ (Z2)n

a ∈ Z4

Clifford group Cn,2 = {U | UPU† ∈ Pn,2}

# qubits
register dimension

phase violates 
binary arithmetic

c(Xb Zc, Xb’ Zc’) = 
b·c’ - b’·c



Qubit Stabilizer Codes

A qubit stabilizer S is an Abelian subgroup of Pn,2 which does not 
contain -I.  The code space corresponding to S is

{|ψ〉| M|ψ〉 =|ψ〉 ∀M∈S}

Example: 5-qubit code  [[5,1,3]]

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

n physical qubits
r = n-k stabilizer generators M1, ..., Mr

k logical qubits

Error syndrome:

s(P) = {c(M1,P), c(M2,P), ..., c(Mr,P)} ∈ (Z2)r 

E.g., for 5-qubit code, s(Y3) = 1110

Other elements of S are products 
of generators.

E.g.: Z Z X I X = M1M2M3M4 for 5-qubit code



Fourier F |x〉= ∑y ωxy |y〉
Phase P |x〉= ωx(x-1)|x〉
CNOT |x, y〉= |x, x+y〉

Prime Dimension Pauli and Clifford

Pauli group Pn,p

Symplectic 
representation (Zp)2n

discard 
phase

ωa Xb Zc

(b|c)

Xb |v〉= |v+b〉
Zc |v〉= ωc·v|v〉

b, c ∈ (Zp)n

a ∈ Zp

Clifford group Cn,p = {U | UPU† ∈ Pn,p}

phase uses mod 
p arithmetic, just 
like everything 
else

c(Xb Zc, Xb’ Zc’) = 
b·c’ - b’·c

Each register has prime dimension p

ω = e2πi / p



Prime Dimensional Stabilizers

A qudit stabilizer S is an Abelian subgroup of Pn,p which does not 
contain ωI.  The code space corresponding to S is

{|ψ〉| M|ψ〉 =|ψ〉 ∀M∈S}

Example: 5-qudit code  [[5,1,3]]p

X Z Z-1 X-1 I
I X Z Z-1 X-1

X-1 I X Z Z-1

Z-1 X-1 I X Z

n physical qudits
r = n-k stabilizer generators M1, ..., Mr

k logical qudits

Error syndrome:

s(P) = {c(M1,P), c(M2,P), ..., c(Mr,P)} ∈ (Zp)r 

E.g., for 5-qubit code, s(X3Z3) = (1,-1,1,0)

Other elements of S are products of 
generators, including powers 1, ..., p-1

E.g.: Z Z-1 X-1 I X = M1-1M2-1M3-1M4-1



b, c ∈ (Zq)n

a ∈ Zq

Composite Dimension

Xb |v〉= |v+b〉
Zc |v〉= ωc·v|v〉

c(Xb Zc, Xb’ Zc’) = 
b·c’ - b’·c

ω = e2πi / q

For composite qudit dimension q, we can 
do this too, using the same Pauli group 
(often known as the Heisenberg-Weyl 
group).

This is workable, but the stabilizer 
codes derived this way lack some of 
the standard structure of stabilizer 
codes for prime-dimensional qudits.

For instance, not all elements of Pn,q are equivalent (some have 
different orders), and there is no simple relationship between 
the number of generators of S and the number of logical qudits.  
There also do not need to be an integral number of qudits.

When q=pm, it is better to use an alternate Pauli group based 
on the finite field of size q.



Finite Fields

A field has Abelian addition and multiplication rules, including 0, 1, 
additive and multiplicative inverses, and a distributive law.

Familiar examples of infinite fields are rationals, reals, & complex #s.
The simplest finite fields are Zp, mod p arithmetic for prime p.

For any q = pm, there exists a unique 
finite field GF(q) of size q.  Such a 
field can be constructed by taking Zp 
and adjoining the roots of irreducible 
polynomials.

GF(q) has characteristic p, meaning 
any element added p times gives 0.

Example:
GF(9) = Z3(α),
α2 + α + 2 = 0 

Elements are 0, 1, 2, α, α
+1, α+2, 2α, 2α+1, 2α+2

E.g.,  α(2α+1) = 2α2 + α 
= 2(-α-2) + α = 2α+2



Zp Versus GF(pm)

GF(q), q=pm can be viewed as a vector space over Zp: pick m 
independent adjoining elements α1, ..., αm.  Then the elements of 
GF(q) can all be written in the form ∑i ci αi, with ci ∈ Zp.

GF(q) = (Zp)m

Zp

Tr

The trace can be used to 
reduce elements of GF(q) to 
elements of Zp:

tr x = x + xp + xp  + ... + xp   2 m-1

Properties of trace:
1. tr α ∈ Zp

2. tr (α+β) = tr α + tr β
3. tr (αp) = tr α
4. tr (aβ) = a tr β (for a ∈ Zp)



α, β ∈ GF(q)n,  c ∈ Zp

“Standard” Pauli Group for q=pm

Pn,q = {ωc Xα Zβ} Xα |γ〉= |γ+α〉
Zβ |γ〉= ωtr β·γ|γ〉

c(Xα Zβ, Xα’ Zβ’) = tr α·β’ - α’·β

For qudits of dimension q=pm, the current preferred definition of 
the Pauli group takes advantage of the trace to allow the 
exponents of X and Z to be elements of GF(q), but the phase is 
still drawn from Zp.  Commutation can also be determined via tr:

However, this definition of Pn,q is isomorphic to Pmn,p.  
That is, we actually have a p-dimensional Pauli group:

Given basis {α1, ... , αm} for GF(q) over Zp, choose a dual basis 
{β1, ... , βm} with the property tr (αiβj) = δij.

Then let α = ∑i ai αi and β = ∑j bj βj, so we can interpret

Xα = Xa1 ⊗ Xa2 ⊗ ... ⊗ Xam

Zβ = Zb1 ⊗ Zb2 ⊗ ... ⊗ Zbm

q-dim. qudit broken up 
into m p-dim qudits



“Standard” Stabilizers for q=pm

Consequently, if stabilizers are defined in the usual way from this 
Pauli group Pn,q, they are equivalent to mn-qudit stabilizers for p-
dimensional qudits.

Example: 5-qudit code  [[5,1,3]]9

X Z Z-1 X-1 I
Xα Zα Z-α X-α I
I X Z Z-1 X-1

I Xα Zα Z-α X-α

X-1 I X Z Z-1

X-α I Xα Zα Z-α

Z-1 X-1 I X Z

Z-α X-α I Xα Zα

n physical qudits
r stabilizer generators M1, ..., Mr

k = n-r/m logical qudits

Error syndrome:
s(P) = {c(M1,P), c(M2,P), ..., c(Mr,P)} ∈ (Zp)r 

Other elements of S are products of 
generators, including powers 1, ..., p-1.  
Powers of α (for GF(9)) require 
additional generators.

Error syndrome still a Zp vector



True GF(q) Stabilizer Codes

Note the example 5-qudit code has an extra symmetry as do 
most other interesting GF(q) stabilizer codes.  In the symplectic 
representation, it is GF(q)-linear, not just Zp-linear:

1 0 0 -1 0 0 1 -1 0 0
α 0 0 -α 0 0 α -α 0 0
0 1 0 0 -1 0 0 1 -1 0
0 α 0 0 -α 0 0 α -α 0
-1 0 1 0 0 0 0 0 1 -1
-α 0 α 0 0 0 0 0 α -α
0 -1 0 1 0 -1 0 0 0 1
0 -α 0 α 0 -α 0 0 0 α

However, since each generator can have an independent phase, so 
there is no clear meaning of the “multiplication by α” symmetry in 
the Pauli group Pn,q.  It should mean “exponentiation by α” but 
that is not a well-defined operation.



Lifted Pauli Group (Odd q)

We want to lift the Pauli group to a larger group where 
exponentiation by elements of GF(q) is well-defined.  We expand 
the set of possible phases to be all elements of GF(q):

Ṗn,q

Ṗn,q = {ωμ Xα Zβ} α, β ∈ GF(q)n,  μ ∈ GF(q)

(ωμ Xα Zβ)(ωμ’ Xα’ Zβ’) = ωμ+μ’-α’·β Xα+α’ Zβ+β’

c(Xα Zβ, Xα’ Zβ’) = α·β’ - α’·β  ∈ GF(q)

We can project an element of the lifted Pauli group back to the 
regular Pauli group by using tr on the phase:

Pn,q

𝚷

ωμ Xα Zβ

ωtr μ Xα Zβ
𝚷

𝚷(PQ) = (𝚷P)(𝚷Q)

c(𝚷P, 𝚷Q) = tr c(P,Q)



Because of the 1/2 that 
appears in the definition 
of exponentiation, this 
only works for odd q.

Exponentiation (Odd q)

(ωμ Xα Zβ)γ = ωγμ-[γ(γ-1)/2] α·β Xγα Zγβ 

phase and existing exponents 
get multiplied by γ

new phase term giving phase 
accumulation from 
“reorganizing” X and Z powers

Note that this formula reduces 
to the correct one for γ∈Zp.
Exponentiation satisfies other 
standard properties:

1. Pγ Pδ = Pγ+δ

2. (Pγ)δ = Pγδ

3. PγQγ = (PQ)γ when c(P,Q)=0



Pauli Group Vs. Lifted Pauli Group

Exponentiation in Ṗn,q lets us group together operators in Pn,q 
whose symplectic representations are related by GF(q) 
multiplication:

ω0 X1 Z1

ω1 X2 Z2

P = ω0 X1 Z1

Ṗ1,9 P1,9 

P2= ω2 X2 Z2

ω2 Xα Zα

Example:

Pα = ω1+α Xα Zα

𝚷
. . 

.

. . 
.

This single element is enough to generate all of the others, 
which correspond to m independent elements of Pn,q.  The 
single phase ωμ (μ ∈ GF(q)) gives the m independent phases 
ωa (a ∈ Zp).

There is a unique correspondence P ∈ Ṗn,q to {𝚷Pγ} ⊂ Pn,q.



Lifted Stabilizers

S is a lifted stabilizer if S is an Abelian subgroup of Ṗn,q closed under 
exponentiation (i.e., P ∈ S ⇒ Pγ ∈ S ∀γ ∈ GF(q)), with ωμ ∉ S.

Thm.: The lifted stabilizers are in one-to-one correspondence with 
the true GF(q) stabilizers.

𝚷 SS
Generalized eigenvalues: |ψ〉 is a generalized eigenvector of P ∈ Ṗn,q 

if it is an eigenvector of Pγ ∀γ ∈ GF(q).  If it has eigenvalue ωai for 
Pγi, then the generalized eigenvalue is ωμ s.t. tr(γiμ) = ai for all i.

The codewords are the generalized ω0 eigenvectors of the 
elements of the lifted stabilizer, and an error E alters the 
generalized eigenvalues, so the error syndrome is the GF(q) 
vector of generalized eigenvalues after E, given by c(E, Mi) for 
generators Mi of the lifted stabilizer.



True GF(q) Clifford Group

Consider Ċn,q, the group of automorphisms of Ṗn,q that fix pure 
phases (i.e. U(ωμ) = ωμ).

Elements of Ċn,q preserve exponentiation: U(Pγ) = [U(P)]γ as well 
as preserving commutation relations like the regular Clifford 
group.

U ∈ Ċn,q

U’ ∈ Cn,q

𝚷
𝚷 U(P) = U’ (𝚷 P) for U’ s.t. 
U’(γx|γz)= γU’ (x|z) in the 
symplectic representation

Ṗn,q can be interpreted as a subgroup of Ċn,q (inner 
automorphisms), and Ċn,q / Ṗn,q = Sp(2n,GF(q))



Phases for Even q

For the qubit Pauli group, the phase is a power of i, a 4th root of 
unity, rather than of a pth root of unity.  To lift the phase properly, 
we need a way to lift Z4 to include elements of GF(2m).

Define a ring W2(q) as follows, for q=2m:

With help from Greg Kuperberg

• Elements have the form α = α1 + 2α2, with α1, α2 ∈ GF(q)
• α+β = (α1 + β1) + 2(α2 + β2 + √α1β1 )
• αβ = (α1β1) + 2(α1β2 + α2β1)

Square root is uniquely defined in a field of characteristic 2.

Let F(α) = (α1)2 + 2 (α2)2 and let tr α = ∑r=0 Fr(α).
Then tr α ∈ W2(2) = Z4.

m-1

W2(q) is the ring of truncated Witt vectors, although with 
non-universal addition and multiplication rules.



α, β ∈ W2(q)n,  μ ∈ W2(q)

Lifted Pauli Group (Even q)

Ṗn,q = {iμ Xα Zβ} 
(iμ Xα Zβ)(iμ’ Xα’ Zβ’) = iμ+μ’-2α’·β Xα+α’ Zβ+β’

c(Xα Zβ, Xα’ Zβ’) = α·β’ - α’·β 

but P and Q commute if 2c(P,Q) = 0

For even q, we let the phase and the exponents of X and Z be 
from W2(q) to define the lifted Pauli group:

Commutation of 
X and Z gives i2

Projection 𝚷 (iμ Xα Zβ) = itr μ Xα1 Zβ1 

Exponentiation: for γ∈W2(q), 

(iμ Xα Zβ)γ = iγμ - γ(γ-1)α·β Xγα ZΥβ

Notice that the 1/2 in the phase has been absorbed by the i.

iμ Xα Zβ is Hermitian if 2μ = 2 α·β 



Lifted Stabilizers, Cliffords (Even q)

The rest of the construction is similar, with one exception:

Lifts are no longer unique

Thus:

• One lifted Pauli P corresponds to {𝚷 Pγ}, but a set {𝚷 Pγ} 
corresponds to some Pauli for any α2, β2.
• A lifted stabilizer S corresponds to a true GF(q) stabilizer 
S’=𝚷S, but more than one S corresponds to the same S’.

• Automorphisms of Ṗn,q correspond to Clifford group 
elements that are GF(q)-linear in the symplectic 
representation, but non-uniquely.

(Fine print: these constructions generally require Hermitian 
elements of Ṗn,q.)



Summary and Future Outlook

• Have the natural GF(q) symmetry that one 
expects when dealing with codes on GF(q) registers
• Encode n-r logical qudits with r generators
• Correctly organize error syndrome information 
into vectors over GF(q)

The lifted Pauli groups provide a way to define 
stabilizer codes for prime power qudits that:

The mathematical context:

• The construction provides an unusual context in 
which one can define exponentiation
• W2(q) and related ideas may be helpful 
understanding other puzzles relating to stabilizers 
and the Clifford group (e.g., magic states)


