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The fusion space 
Any anyon model is first defined by the list of particle types 
 
 
 
Two (or more) anyons can be fused into a single composite. Particle type of 
composite given by fusion rules 
 
 
 
For non-Abelian anyons, result of fusion depends on more than just local 
degrees of freedom (such as particle types of components) 
 
 
 
Depends also on non-local degrees properties of many-anyon states: 
The fusion space 
 
Naturally a good candidate to store quantum information: quantum memory 
 
 
 
 
 

1,a1,a2,...{ }

ai × aj = ak + al +…

ai × aj = ak e× e =1



Decoding non-Abelian quantum memories 

Abelian model with                  fusion rule. 
information stored in anyon occupancy of 
hole (blue) 
 
 
 
 
Best operator for correction is unambiguous: 
Errors moved an anyon into the hole, so move 
antiparticle in to cancel the effect 

Non-Abelian model with 
information stored in fusion outcome of 
computational anyons (blue) 
 
 
 
 
Best operator for correction is ambiguous: 
Same probability that errors fused with 
Computational anyons and didn't! 

If method to remove anyons depends on their positions alone, it will cause a logical 
error with high probability 
 
Anyon configuration is not sufficient syndrome information for error correction 
 
We must measure the fusion space! 

e× e =1 τ ×τ =1+τ



Decoding non-Abelian quantum memories 

 
 
 
 
 
 
 
 

Another danger: uncorrectable logical errors 
 
In the Abelian case, any known logical error can be corrected 
 
 
 
 
 
 
 
 
 
 
 
 
Just send in the antiparticles! 
 
For the non-Abelian case this doesn’t have a uniquely defined result 
 
It will not always undo the error, and will not tell us if it has 
 
Can cause problems if we fuse the wrong things 



To obtain enough information to decode, fusion measurements must be made 
 
Pairs (or clusters) of anyons should be combined and the composite particle 
type determined 
 
Doing this blindly can lead to uncorrectable errors! 
 
The fusion process is also irreversible 
 
Best candidate: pairs created by the same error chain 
 
So the decoder needs to: 
 

 1. Find clusters of anyons 
 

 2. Fuse them 
 

 3. Repeat until all have annihilated 
    

Decoding algorithm 



Known HDRG Decoders 

We already know decoders that work like this, even for the Abelian case 
 
Each decoder defines a search distance D(n), depending on the round of 
iteration. 
 
Bravyi-Haah 2011 

•  D(n)=2n, (L∞ norm) 
•  Clusters consist of connected components of the syndrome 

Anwar-Brown-Campbell-Browne 2013 
•  D(n)=n+1, (combination of L1 and L∞) 
•  Clusters consist of connected components of the syndrome 

Expanding Diamonds (Dennis Thesis) 
•  D(n)=n+1, Manhattan distance (L1 norm) 
•  New clusters are built out of pairs of mutual nearest neighbors of 

previous clusters 
 
These all have an additional property: 

 Clusters that fuse to vacuum (neutral clusters) are completely      
 forgotten about once they are identified. 

 
 



Let’s look at the kinds of error that are a problem for these decoders 
 
 
 
 
 
 
 
 
 
 
Anyons are continually paired incorrectly 
 
They are then forgotten about 
 
Structure required to fool ED and ABCB needs only ~L0.63 errors 
 
For  BH ~L0.67  errors are needed. Both fall far short of the linear ideal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

HDRG Decoders 
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This might never have happened if we kept the full syndrome in mind 
 
How do we do this such that the method remains efficient? 
 
 
 
 
 
 
 
 
 
Distance between left and right anyons should reflect the number of errors 
needed to connect them 
 
This is not 2l0 + l1, it is 2l0 
 
Distance should be allowed to take a 'shortcut' via the neutral cluster 

Shortcuts 

l0 
g0 

l1 

l0 



When a neutral cluster is found: 
  - Remove it from the syndrome, but... 
  - Update distances between all other clusters according to 

 
 
 
 
 
We effectively add wormholes to the lattice, to keep the memory of neutral 
clusters alive 
 
 
 
 
 
 
 
These allow mistakes caused by false neutrality to be undone 
 
Number of errors required then becomes 

Shortcuts 

L1−ε



These shortcuts can be used along with your favourite clustering method 
 
But can we develop a better one? 
 
Now we can avoid false neutrality problems, we can try to extract as much 
syndrome information as possible 
 
We can consider methods, like expanding diamonds, that only form new 
clusters out of two non-neutral ones 
 
This sounds like a job for minimum weight perfect matching! 
 
 

Matching based clustering 



MWPM can be used when errors create pairs of anyons (Toric Code) 
 
Each anyon pair is assigned a weight according the number of errors needed 
to create them 
 
 
 
 
 
 
 
MWPM finds minimum weight pairing, and so minimum error chain 
 
But this cannot be used for general anyon models 
 
 
 
 

Matching based clustering 

   

   
   

   

   

   
   



For simplicity, consider only error chains that split at anyons 
 
Number of errors required for decays is too high in general, due to chains 
splitting only at anyons 
 
 
 
 
Any such minimal error chain will be a star graph 

•  Single internal vertex 
•  Internal vertex is nn of all external ones 

 
We can interpret these errors in terms of a single 
pair creation, followed by a set of decays 
 
The pair consists of the internal vertex and one external vertex 
 
 
 
 
 
 

Matching based clustering: I 

   

   

      

   

   

   

   



Minimal error chains may be found using a minimum weight (non-perfect) 
matching problem, which can also be solved with Blossom 
 
Anyons can be paired, with a pairing weight Wij, or not paired with a weight Wj 
 
For Wj = dj,nn(j) , the non-paired anyons correspond to decays from nn’s 
 
 
 
 
 
 
 
 
 
 
 
 
Since Wj  is too high in general, maybe a lower weight would work better 
 
 
 
 
 
 
 
 

Matching based clustering: I 
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Good candidate for pairs: mutual nearest neighbours 
 

     dj,nn(j) =dk,nn(k) 
 
If we use Wj = dj,nn(j)/2, the matching will only pair mutual nearest neighbours 
 
But method doesn’t care if it gets pairs or not, and we’d like lots of pairs 
 
Maybe it would be better to use a higher Wj, penalizing non-pairing 
 
Together, the two methods suggest we use Wj = k dj,nn(j)  for 0.5 < k < 1 
 
The value k is defined simply as the one that works best 
 
We also include many degeneracy based terms in the weights 
 
This decoder can also be used for decoding Abelian codes 
See poster by Adrian Hutter later 
 
 
 
 
 
 
 

Matching based clustering: II 



For further study, we need a concrete anyon model 
 
We choose the               model: 
 

   Submodel of the universal D(S3) anyon model (Mochon ‘04) 
 

   Efficiently simulable 
 

   Has fusion behaviour similar to Fibonacci and Ising 
 
 

      
     Fibonacci: 

 
     Ising: 

 
 
 
 
 
 
 
 
 
 
 
 

Phi-Lambda Model 

Φ×Φ =1+Λ +Φ, Λ×Λ =1

Φ−Λ

τ ×τ =1+τ

σ ×σ =1+ψ



Simulation is done on a spin lattice, based on the (Abelian) D(Z6) model 
 
We consider a quantum memory based on these edge occupancies 
 
Two types of error: 

  those that create          pairs 
  those that create          pairs 

 
i.i.d. noise model with 
 
 
Measurements are assumed to be 
perfect 
 
No noise acts during decoding 
 
(Unrealistic, but first step) 
 
Decoder first deals with        anyons, and then         anyons 
 
 

Error model 

Φ
Λ

pΦ = pΛ = p / 2

Φ Λ



With expanding diamonds (without shortcuts) we found a threshold 
 
First indication that FTQC is actually possible using non-Abelian anyons 
 
With our improved decoder we find 
 
Similar improvements found for qudit codes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
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More realistic cases must be considered before we have a true threshold 
theorem 
 
One important case is continuous decoding: code is measured periodically 
to keep errors suppressed for a long time 
 
Especially important is the case of measurement errors 
 
Trade-off between waiting long enough to do sensible fusions, and not allowing 
anyons to build up over time 
 
 
 
 
 

Outlook: Continuous Decoding 



 
 
 
 
 
 
 
 
 
 
 
 

          Equivalent to      creating error applied 
          to every error spin with probability ½ 
          before the       creating errors are applied: 
          uncorrectable 

 
 
 
 
 

Outlook: Continuous Decoding 
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Thanks for your attention 


