
Error Correction for non-Abelian anyons

James R. Wootton, Jan Burri, Daniel Loss
Universität Basel

Sofyan Iblisdir
Universitat de Barcelona

Phys. Rev. X 4, 011051 (2014)

Adrian Hutter, Daniel Loss, James R. Wootton
Universität Basel

arXiv:1410.4478

The fusion space
Any anyon model is first defined by the list of particle types

Two (or more) anyons can be fused into a single composite. Particle type of
composite given by fusion rules

For non-Abelian anyons, result of fusion depends on more than just local
degrees of freedom (such as particle types of components)

Depends also on non-local degrees properties of many-anyon states:
The fusion space

Naturally a good candidate to store quantum information: quantum memory

1,a1,a2,...{ }

ai × aj = ak + al +…

ai × aj = ak e× e =1

Decoding non-Abelian quantum memories

Abelian model with fusion rule.
information stored in anyon occupancy of
hole (blue)

Best operator for correction is unambiguous:
Errors moved an anyon into the hole, so move
antiparticle in to cancel the effect

Non-Abelian model with
information stored in fusion outcome of
computational anyons (blue)

Best operator for correction is ambiguous:
Same probability that errors fused with
Computational anyons and didn't!

If method to remove anyons depends on their positions alone, it will cause a logical
error with high probability

Anyon configuration is not sufficient syndrome information for error correction

We must measure the fusion space!

e× e =1 τ ×τ =1+τ

Decoding non-Abelian quantum memories

Another danger: uncorrectable logical errors

In the Abelian case, any known logical error can be corrected

Just send in the antiparticles!

For the non-Abelian case this doesn’t have a uniquely defined result

It will not always undo the error, and will not tell us if it has

Can cause problems if we fuse the wrong things

To obtain enough information to decode, fusion measurements must be made

Pairs (or clusters) of anyons should be combined and the composite particle
type determined

Doing this blindly can lead to uncorrectable errors!

The fusion process is also irreversible

Best candidate: pairs created by the same error chain

So the decoder needs to:

 1. Find clusters of anyons

 2. Fuse them

 3. Repeat until all have annihilated

Decoding algorithm

Known HDRG Decoders

We already know decoders that work like this, even for the Abelian case

Each decoder defines a search distance D(n), depending on the round of
iteration.

Bravyi-Haah 2011

•  D(n)=2n, (L∞ norm)
•  Clusters consist of connected components of the syndrome

Anwar-Brown-Campbell-Browne 2013
•  D(n)=n+1, (combination of L1 and L∞)
•  Clusters consist of connected components of the syndrome

Expanding Diamonds (Dennis Thesis)
•  D(n)=n+1, Manhattan distance (L1 norm)
•  New clusters are built out of pairs of mutual nearest neighbors of

previous clusters

These all have an additional property:

 Clusters that fuse to vacuum (neutral clusters) are completely
 forgotten about once they are identified.

Let’s look at the kinds of error that are a problem for these decoders

Anyons are continually paired incorrectly

They are then forgotten about

Structure required to fool ED and ABCB needs only ~L0.63 errors

For BH ~L0.67 errors are needed. Both fall far short of the linear ideal

HDRG Decoders

l0
g0

l1

g0 l0
g1 l0 l0

l1

This might never have happened if we kept the full syndrome in mind

How do we do this such that the method remains efficient?

Distance between left and right anyons should reflect the number of errors
needed to connect them

This is not 2l0 + l1, it is 2l0

Distance should be allowed to take a 'shortcut' via the neutral cluster

Shortcuts

l0
g0

l1

l0

When a neutral cluster is found:
 - Remove it from the syndrome, but...
 - Update distances between all other clusters according to

We effectively add wormholes to the lattice, to keep the memory of neutral
clusters alive

These allow mistakes caused by false neutrality to be undone

Number of errors required then becomes

Shortcuts

L1−ε

These shortcuts can be used along with your favourite clustering method

But can we develop a better one?

Now we can avoid false neutrality problems, we can try to extract as much
syndrome information as possible

We can consider methods, like expanding diamonds, that only form new
clusters out of two non-neutral ones

This sounds like a job for minimum weight perfect matching!

Matching based clustering

MWPM can be used when errors create pairs of anyons (Toric Code)

Each anyon pair is assigned a weight according the number of errors needed
to create them

MWPM finds minimum weight pairing, and so minimum error chain

But this cannot be used for general anyon models

Matching based clustering

For simplicity, consider only error chains that split at anyons

Number of errors required for decays is too high in general, due to chains
splitting only at anyons

Any such minimal error chain will be a star graph

•  Single internal vertex
•  Internal vertex is nn of all external ones

We can interpret these errors in terms of a single
pair creation, followed by a set of decays

The pair consists of the internal vertex and one external vertex

Matching based clustering: I

Minimal error chains may be found using a minimum weight (non-perfect)
matching problem, which can also be solved with Blossom

Anyons can be paired, with a pairing weight Wij, or not paired with a weight Wj

For Wj = dj,nn(j) , the non-paired anyons correspond to decays from nn’s

Since Wj is too high in general, maybe a lower weight would work better

Matching based clustering: I

i

j

k

Wi

Wk

Wj
Wij

Wjk
Wik

i
j

k

Wij Wjk

Wik

i’

k’

j’

Wk

Wi

Wj

0

0

0

Good candidate for pairs: mutual nearest neighbours

 dj,nn(j) =dk,nn(k)

If we use Wj = dj,nn(j)/2, the matching will only pair mutual nearest neighbours

But method doesn’t care if it gets pairs or not, and we’d like lots of pairs

Maybe it would be better to use a higher Wj, penalizing non-pairing

Together, the two methods suggest we use Wj = k dj,nn(j) for 0.5 < k < 1

The value k is defined simply as the one that works best

We also include many degeneracy based terms in the weights

This decoder can also be used for decoding Abelian codes
See poster by Adrian Hutter later

Matching based clustering: II

For further study, we need a concrete anyon model

We choose the model:

 Submodel of the universal D(S3) anyon model (Mochon ‘04)

 Efficiently simulable

 Has fusion behaviour similar to Fibonacci and Ising

 Fibonacci:

 Ising:

Phi-Lambda Model

Φ×Φ =1+Λ +Φ, Λ×Λ =1

Φ−Λ

τ ×τ =1+τ

σ ×σ =1+ψ

Simulation is done on a spin lattice, based on the (Abelian) D(Z6) model

We consider a quantum memory based on these edge occupancies

Two types of error:

 those that create pairs
 those that create pairs

i.i.d. noise model with

Measurements are assumed to be
perfect

No noise acts during decoding

(Unrealistic, but first step)

Decoder first deals with anyons, and then anyons

Error model

Φ
Λ

pΦ = pΛ = p / 2

Φ Λ

With expanding diamonds (without shortcuts) we found a threshold

First indication that FTQC is actually possible using non-Abelian anyons

With our improved decoder we find

Similar improvements found for qudit codes

Results

pc ≈ 7%

pc ≈15%

pc

d

ABCB ‘13

Andrist, JRW, Katzgraber ‘14

Hutter, Loss, JRW ‘14

More realistic cases must be considered before we have a true threshold
theorem

One important case is continuous decoding: code is measured periodically
to keep errors suppressed for a long time

Especially important is the case of measurement errors

Trade-off between waiting long enough to do sensible fusions, and not allowing
anyons to build up over time

Outlook: Continuous Decoding

 Equivalent to creating error applied
 to every error spin with probability ½
 before the creating errors are applied:
 uncorrectable

Outlook: Continuous Decoding

Φ Φ×ΦΦ×ΦΦ×ΦΦ×Φ Φ

Φ Φ

1
≡
Φ×Λ

1

Φ×Λ

Φ

Λ

Thanks for your attention

