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Figure 2. Partitioning Kitaev’s lattice.

The Hamiltonian of the model is

H Kit
! = −

∑

s

JXs −
∑

p

JZp, J > 0. (82)

Similarly to the Ising model the ground states are totally unfrustrated: all Xs and Zp have
expectation 1. This is actually not sufficient to fully determine the state of all spins as the star
and plaquette observables are not independent: because of the periodic boundary conditions
they satisfy

∏

s

Xs = 1 and
∏

p

Zp = 1. (83)

As a consequence, two topological qubit freedoms are left which may be used for encoding.
The Hamiltonian (82) can be chosen more generically by multiplying the individual star and
plaquette observables by positive but otherwise arbitrary coefficients, this will not change
the set of ground states. Here too, it is natural to consider the commutant of such a generic
Hamiltonian which consists of a product of two qubit algebras and AXZ. This is seen quite
explicitly by introducing, similarly to (42), observables for two encoded qubits

X1 =
∏

j∈c1

σ x
j ′ , X2 =

∏

j∈c2

σ x
j ′

Z1 =
∏

j∈d1

σ z
j , Z2 =

∏

j∈d2

σ z
j .

(84)

Here, c1, d1, c2 and d2 are the loops shown in figure 1. Unlike for the Ising ring, all qubit
observables are very delocalized.

Let us divide the set of spins into four disjoint subsets, see figure 2: the snake, the comb,
spin 1 and spin 2. Spin 1 is located at the crossing of X1 and Z1, i.e. c1 and d1, and similarly
for spin 2. Note that the qubit X1 has been modified a little, so that it closely follows the snake.
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Phenomenological law of the lifetime

Bravyi, Sergey, and Barbara Terhal, J. Phys. 11 (2009) 043029

Olivier Landon-Cardinal, David Poulin  Phys. Rev. Lett. 110, 090502 (2013)



The energy barrier

tmem ⇠ e�EB

• Arrhenius law

| 1i| 0i

• Question:
Can we prove a connection between the energy barrier and thermalization ? 

Phenomenological law of the lifetime

Bravyi, Sergey, and Barbara Terhal, J. Phys. 11 (2009) 043029

Olivier Landon-Cardinal, David Poulin  Phys. Rev. Lett. 110, 090502 (2013)



Stabilizer Hamiltonians 

Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons.   Annals of Physics, 303(1), 2–30.

Example : Toric Code

A set of commuting Pauli matrices



Stabilizer Hamiltonians 

Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons.   Annals of Physics, 303(1), 2–30.

Example : Toric Code

A set of commuting Pauli matrices

The Stabilizer Group 
Logical operators



Stabilizer Hamiltonians 
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Example : Toric Code

A set of commuting Pauli matrices

The Stabilizer Group 
Logical operators

Stabilizer Hamiltonian
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Thermal noise model & Weak coupling limit 

⇢S(t+�t) = trR[e
�iH�t(⇢(t)⌦ ⇢R)e

iH�t]
The evolution :

Weak coupling limit & Markovian approximation: 

Davies, E. B. (1974). Markovian master equations.  
Communications in Mathematical Physics, 39(2), 91–110.



The Davies generator



The Davies generator

* Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic 
and Conduction Problems. Journal of the Physical Society of Japan, 12(6), 570–586.
Martin, P., & Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115(6), 1342–1373. 

For a single thermal bath: 
KMS conditions*:  

Ensures detail balance with: 

Gibbs state as steady state

�S↵(!) = e�!S↵(!)�

� / e��HS
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• Exponential convergence

Temme, K., et al. "The χ2-divergence and mixing times of quantum Markov processes."  
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Convergence to the fixed point σ

t > t
mix

(✏) ) keLt(⇢0)� �ktr  ✏

t
mix

⇠ O(�N��1)

• For a unique fixed point:

• Exponential convergence

• A thermal  σ   implies the bound

k��1k ⇠ ec�N =)

Temme, K., et al. "The χ2-divergence and mixing times of quantum Markov processes."  
Journal of Mathematical Physics 51.12 (2010): 122201.



Spectral gap bound

20

Definition 13 Given the commuting Pauli Hamiltonian H as in eqn. (1), and for any η ∈
2N
2 with a Pauli path ηt = ⊕t

s=0αs, we define the energy of the Pauli η as

ϵ(η) = max
t

M
∑

k=1

2|Jk|ek(ηt)ek(η). (78)

Here ek = ek ⊕ 1 denotes the conjugation of the bit value. In this sum ek and ek are
interpreted as integers. Furthermore, we define the generalized energy barrier as

ϵ = min
Γ

max
η∈ 2N

2

ϵ(η). (79)

The minimum is taken over all possible orderings of the qubits Γ.

This definition of the generalized energy barrier differs from the energy cost of an arbi-
trary Pauli operator as given in [14] by the factors ek(η) in the summation. These factors
essentially remove any contribution to the barrier that originate from the final Pauli operator
η itself. Therefore the only summands that contribute to ϵ(η) come from violations of gen-
erators gi which are not already violated by η itself already. This generalized energy barrier
can interpreted as follows:
Suppose, we are given a set of commuting Pauli operators G = {gi}i=1,...,M that define

the HamiltonianH . We consider the reduced subset of generators

Gη =
{

g ∈ G
∣

∣

∣
[g,σ(η)] = 0

}

, (80)

which is obtained from removing all generators gi from the generating set that anti commute
with the Pauli operator σ(η). If the original set generated a stabilizer group S = ⟨G⟩, we
can now consider the reduced subgroup Sη = ⟨Gη⟩, for which now σ(η) acts like a logical
operator. The energy ϵ(η) can then be interpreted as the conventional energy barrier of the
logical operator σ(η) of the new code Sη .
This of course immediately implies, that if η was a logical operator for the original sta-

bilizer group S, then ϵ(η) is just the conventional energy barrier for this particular logical
operator since all ek(η) = 1. A graphical construction of this energy barrier is given for a
particular model in the subsection IVA.
When any local defect can be grown into a logical operator of a stabilizer code S by

applying single qubit Pauli operators and in turn any Pauli operator can be decomposed into
a product of the clusters of such excitations, ϵ corresponds to the largest energy barrier of any
of the canonical logical operators [47]. It is now in fact this constant ϵ that determines the
lower bound on the spectral gap of the Davies generator.

Theorem 14 For any commuting Pauli Hamiltonian H , eqn. (1), the spectral gap λ of the
Davies generator Lβ , c.f. eqn (15), with weight one Pauli couplingsW1 is bounded by

λ ≥
h∗

4η∗
exp(−2β ϵ), (81)

where ϵ, denotes the generalized energy barrier defined in (79). Note that η∗ = O(N)
denotes the length of the largest path in Pauli space and h∗ = minωα(a) h

α(ωα(a)) is the
smallest transition rate (18).

PROOF: Before we proceed to evaluate the bound in theorem 11 for τγ0 , we need to establish
two important observations.
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generalized energy barrier : ✏

smallest transition rate:

The largest Pauli path: ⌘⇤ = O(N)
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The generalized energy barrier
Example:  2D Toric Code
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Consider the toric code on an 
lattice

leads to a bound

High temperature bound

Fernando Pastawski

Michael Kastoryano
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Discussion of the bound

tmem ⇠ e�EB

• Relationship to Arrhenius law

• Can we get rid of the 1/N factor?

• It would be nicer to have a bound that includes 
“entropic contributions”



Proof sketch

• The Poincare Inequality 

• Matrix pencils and the PI 

• The canonical paths bound 

• The spectral gap and the energy barrier



The Poincare Inequality

�Var�(f, f)  E(f, f)



The Poincare Inequality

�
⇣
tr
⇥
�f†f

⇤
� tr [�f ]2

⌘
 �tr

⇥
�f†L(f)

⇤



The Poincare Inequality

• Sampling the Permanent :

For classical Markov processes

Cheeger’s bound Canonical paths
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The Poincare Inequality

• Sampling the Permanent :

For classical Markov processes

Challenges in the quantum setting

Cheeger’s bound Canonical paths

• We are missing a general geometric picture

M. Jerrum, A. Sinclair. "Approximating the permanent."  
SIAM journal on computing 18.6 (1989): 1149-1178.

• Powerful because it can lead to a geometric interpretation

�
⇣
tr
⇥
�f†f

⇤
� tr [�f ]2

⌘
 �tr

⇥
�f†L(f)

⇤
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Var�(f, f) = (f |V̂|f)E(f, f) = (f |Ê |f)

⌧ Ê � V̂ � 0⌧minimize subject to

�Var�(f, f)  E(f, f)Equivalent formulation for

andwhere

AW = B⌧ = min kWk2

Ê = AA† V̂ = BB†Lemma:  Let 

subject to

and

Boman, Erik G., and Bruce Hendrickson. "Support theory for preconditioning." SIAM 
Journal on Matrix Analysis and Applications 25.3 (2003): 694-717.
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A generalization yields to the matrix triple [A,B,W ]

kWk2 can be bounded by suitable norm bounds
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Canonical paths bound

⌧  max

⇠

4⌘⇤

2

Nh(!↵
(b))⇢b

X

⌘̂a2�(⇠)

⇢a⇢a⌘

Dressed Pauli paths :

The matrix norm bound yields 

• The norm bound on          can be evaluated 
in the following picture 

kWk2
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The spectral gap and the energy barrier
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Conclusion and Open Questions

• It would be great if one could extend the results 
to more general quantum memory models.

• This only provides a converse to the lifetime of the classical 
memory. It would be great if one could find a converse for the 
quantum memory time

• Can we get rid of the prefactor?

• Is it possible to find a bound that also takes the “entropic” 
contributions into account?




