New existence bounds for decoding transition with Q-LDPC codes: percolation on hypergraphs Leonid Pryadko UC, Riverside QEC14: Dec 16, 2014 $p_e + (1 - p_e) [4p_X(1 - p_X)]^{1/2} < (w_Z - 1)^{-1}$ $2[4q(1-q)]^{1/2} + w_Z \left\{ p_e + (1-p_e)[4p_X(1-p_X)]^{1/2} \right\} < 1$

Ilya Dumer (UCR) Alexey Kovalev (UNL) Kathleen Hamilton (UCR) arXiv:1208.2317 arXiv:1311.7688 arXiv:1405.0050 ¹arXiv:1405.0348 & **new work**

New existence bounds for decoding transition with Q-LDPC codes: percolation on hypergraphs

> Leonid Pryadko UC, Riverside

QEC14: Dec 16, 2014

- Introduction: SAW-based bound for the surface codes
- Old bound for Q-LDPC codes with log distance
- New bounds: count irreducible undetectable operators
- Conclusions and open problems

Ilya Dumer (UCR) Alexey Kovalev (UNL) Kathleen Hamilton (UCR) arXiv:1208.2317 arXiv:1311.7688 arXiv:1405.0050 ¹arXiv:1405.0348 & **new work**

Decoding threshold

Decoding threshold p_c : Consider an infinite family of error correcting codes. With probability p for independent errors per (qu)bit, at $p < p_c$, a large enough code can correct all errors with success probability $P \rightarrow 1$, but not at $p > p_c$

Example: code family with **finite relative distance** $\delta = d/n$. A code can detect any error involving w < d (qu)bits, and distinguish between any two errors involving w < d/2 qubits each. For such a family, $p_c \ge \delta/2$.

In practice, this does not quite work since such codes have stablizer generators of weight $\sim n$: measuring syndrome is hard All known code families with finite-weight stabilizer generators have distance scaling logarithmically or as a sublinear power of n. Zero-rate codes: toric (Kitaev) color (Bombin et al.)

Family of codes invented by Alexey Kitaev (orig: *toric* codes) Stabilizer generators: plaquette $A_{\Box} = ZZZZ$ and vertex $B_{+} = XXXX$ operators (this is a CSS code).

Family of codes invented by Alexey Kitaev (orig: *toric* codes) Stabilizer generators: plaquette $A_{\Box} = ZZZZ$ and vertex $B_{+} = XXXX$ operators (this is a CSS code).

Detectable errors: have open X chains along dual lattice or open Z chains on the original lattice

Family of codes invented by Alexey Kitaev (orig: *toric* codes) Stabilizer generators: plaquette $A_{\Box} = ZZZZ$ and vertex $B_{+} = XXXX$ operators (this is a CSS code).

Detectable errors: have open X chains along dual lattice or open Z chains on the original lattice

Family of codes invented by Alexey Kitaev (orig: *toric* codes) Stabilizer generators: plaquette $A_{\Box} = ZZZZ$ and vertex $B_{+} = XXXX$ operators (this is a CSS code).

Detectable errors: have open X chains along dual lattice or open Z chains on the original lattice

Undetectable error: only closed chains

Trivial undetectable error: topologically trivial loops

Bad undetectable error: topologically non-trivial loop \Rightarrow Code distance $d = L \propto \sqrt{n}$.

$$[[n = 2L^2, k = 2, d = L]]$$

Surface codes: finite decoding threshold

Distance scales as $d \propto n^{1/2}$, meaning zero relative distance $\delta \propto n^{-1/2}$, $n \to \infty$. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

- Counting topologically non-trivial chains
- Mapping to the Ising model with bond disorder

Surface codes: finite decoding threshold

Distance scales as $d \propto n^{1/2}$, meaning zero relative distance $\delta \propto n^{-1/2}$, $n \to \infty$. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

- Counting topologically non-trivial chains
- Mapping to the Ising model with bond disorder

Erasures: unrecoverable chain len. $\ell \geq d$:

 $Q_{\ell} \le n \, p^{\ell} \#(\mathrm{SAW}_{\ell}) \le n \, (3p)^{\ell}$

Uncorrectable error: such a chain more
than half-filled with errors. Probability:
P_ℓ ≤ n #(SAW_ℓ) ∑_{m≥⌊ℓ/2⌋} (^ℓ_m)p^m(1-p)^{ℓ-m}

 $P_{\ell} \le n \, 3^{\ell} \times 2^{\ell} [p(1-p)]^{\ell/2}$

Neither happens at sufficiently small p!

General (h, w)-limited Q-LDPC codes

Example: hypergraph product code constructed from [7, 3, 4] cyclic code. Column weights $\leq h = 3$, row weights $\leq w = 6$.

$$G_X = \begin{pmatrix} & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & \leftarrow \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & \leftarrow \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & \cdots & \leftarrow \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & \leftarrow \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & \leftarrow \end{pmatrix}$$

Observation: for small p, errors can be separated into clusters which affect different subsets of generators.

Here, each qubit has up to $z \equiv h(w-1)$ neighbors.

Formation of large clusters can be viewed as percolation on a graph with vertex degrees bounded by z.

Threshold theorem and sparse-graph codes (cont'd)

- Start with a small per-qubit error probability $p \ll 1$.
- Connect errors affecting common generators. For small p and a sparse code these form small disconnected clusters

Threshold theorem and sparse-graph codes (cont'd)

- Start with a small per-qubit error probability $p \ll 1$.
- Connect errors affecting common generators. For small p and a sparse code these form small disconnected clusters
- Key observation: disconnected clusters can be detected independently; they do not affect each other's syndromes.

This implies that errors formed by clusters of weight w < d are all detectable

Threshold theorem and sparse-graph codes (cont'd)

- Start with a small per-qubit error probability $p \ll 1$.
- Connect errors affecting common generators. For small *p* and a sparse code these form small disconnected clusters
- Key observation: disconnected clusters can be detected independently; they do not affect each other's syndromes.

This implies that errors formed by clusters of weight w < d are all detectable

- Below percolation limit p_c , probability to have a cluster of large weight w is exponentially small with w.
- Maximum cluster size grows logarithmically with n (for small enough p this is also true for confusing half-filled clusters)

Conclusion: as long as $d \propto n^{\alpha}$, $\alpha > 0$ (or even logarithmic), a sparse-graph code can correct errors at finite *p*. [Kovalev & LPP, '13]

Percolation-based threshold for quantum LDPC codes

Actual value of the threshold for erasures: $p_e \ge (z-1)^{-1}$ for (h, w)-limited code. For depolarizing channel: $p_d \ge [2e(z-1)]^{-2}$ (assuming power-law distance).

Here $z \equiv h(w-1)$.

Trouble: This threshold is much weaker than what we have for the toric codes (h = 2, w = 4), even though both thresholds are related to percolation.

Reason: This approximates code as a qubit-connectivity graph. Any structure associated with the action of generators is ignored

Irreducible cluster counting algorithm

Definition 1 For a given stabilizer code, an undetectable operator is called irreducible if it cannot be decomposed as a product of two disjoint undetectable Pauli operators.

Algorithm for CSS code (*X* **errors**)

- Order the stabilizer generators; pick a starting bit (*n* choices)
- At each recursion step, deal with topmost "unhappy" stabilizer generator and pick a bit among unselected points in its support (up to w 1 choices)
- Recursion stops when syndrome is zero (an undetectable operator is found), or when there are no more positions for a given generator (have to go back).
- After *m* recursion steps, return all irreducible undetectable operators of weight up to *m*. Complexity $\overline{N}_m = n (w-1)^{m-1}$.

This gives upper bound for the number N_m of irreducible logical operators at $m \ge d$.

Toric code example

Reducible cluster will be returned or not, depending on the order in which the numbered qubits are encountered

Minimum-energy decoding

Let P(E) be some error probability, energy $\varepsilon = -\ln P(E)$.

- For an (unknown) error E, let E' be the minimum-energy error with the same syndrome $\Rightarrow E'E^{\dagger}$ is undetectable.
- Decompose $E'E^{\dagger} = \prod_{j} J_{j}$ into irreducible operators J_{j} .
- Error found correctly if $\hat{\varepsilon}(J_j E) > \varepsilon(E)$ for all J_j that are nontrivial logical operators (J_j not in stabilizer)

Decoding is asymptotically correct at $n \to \infty$ if the probability for a "bad" error for any irreducible $J \in C(S) \setminus S$ vanishes.

Let $\varepsilon(E)$ correspond to uniform uncorrelated errors. Then for a given J, probability P_m of bad error only depends on $m \equiv \text{wgt } J$. **Example:** Erasures with probability $p_e \Rightarrow P_m = p_e^m$.

Total probability to fail: $P_{\text{fail}} \leq \sum_{m \geq d} P_m \overline{N}_m \leq \frac{n[(w-1)p_e]^d}{1-(w-1)p_e}$

Improved cluster counting

For toric code, w = 4, and this bound is the same as simple-minded walk counting $(N_m \sim n \, 3^{m-1})$

Power-law scaling of N_m for different codes — exponents can be used for improved bounds, just like SAW exponent in the case of the toric code [$\zeta_6 \approx 4.76$, $\zeta_7 \approx 5.74$, $\zeta_8 \approx 5.79$ and $\zeta_9 \approx 6.78$]

Combination of erasures and independent X/Z errors Combined erasures (probability p_e) and X errors (probability p). Probability of E: a erasures and b X errors in a cluster of size m: $P_E = \binom{m}{a} p_e^a (1 - p_e)^{m-a} \binom{m-a}{b} p^b (1 - p)^{m-a-b}$.

Probability of JE (invert bits outside of the erasure): $P_{JE} = \binom{m}{a} p_e^a (1-p_e)^{m-a} \binom{m-a}{b} (1-p)^b p^{m-a-b}.$

Bad errors: $P_E \leq P_{JE}$, which gives m - a - 2b > 0.

Upper bound for bad error probability in a cluster of size m: $P_m = \left\{ p_e + (1 - p_e) [4p(1 - p)]^{1/2} \right\}^m.$

With code distance scaling as a power law $d \ge An^{\alpha}$, $\alpha > 0$, minimum-energy decoding asymptotically successful if

$$p_e + (1 - p_e)[4p(1 - p)]^{1/2} \le (w - 1)^{-1}.$$

Fault-tolerant case

With syndrome errors, use aux 3D code with CSS-like generators (analog of 3D line matching): $P = (I_m \otimes H_{r \times n}, R_{m \times (m-1)} \otimes I_r)$ Degeneracy generator: $Q = \begin{pmatrix} [R^T]_{(m-1) \times m} \otimes I_n & I_{m-1} \otimes [H^T]_{n \times r} \\ I_m \otimes G_{r' \times n}, & 0 \end{pmatrix}$ Repetition code check matrix: $[R^T]_{(m-1) \times m} \equiv \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ & \ddots & \ddots & 1 & 1 \end{pmatrix}$

Bound the number of clusters of size m, with m_q qubit errors: $\overline{N}_{m,m_q} \leq {m \choose m_q} w^{m_q} 2^{m-m_q}$

For combination of uncorrelated erasures (p_e) , depolarizing (p), and syndrome errors, with distance $d \ge D \ln n$, we get

$$4[q(1-q)]^{1/2} + wY \le e^{-1/D},$$

$$Y \equiv p_e + (1-p_e) \left\{ \frac{2p}{3} + 2\left[\frac{p}{3}(1-p)\right]^{1/2} \right\}$$

Summary

- New analytic lower bound for the thresholds with minimum-energy decoder
 - Same accuracy as counting SAWs for the toric code
 - Simple expressions for uncorrelated errors
 - Phenomenological syndrome errors included on equal footing
 - Way better than the old percolation-based bound
- Erasure threshold, e.g., $p_e \ge (w-1)^{-1}$ for CSS codes, also gives bounds:
 - for code rate, using $1 R \ge 2p_e \Rightarrow R < 1 2/(w 1)$
 - for codes with transverse logical ops in m th level of Clifford chierarcy, $p_e \le 1/w$ [Yoshida & Pastawski (2014)]
- This corresponds to a bound on percolation of (binary) cycles on hypergraphs
- Yet percolation on a graph (like the old bound) can be also used:
 - With large variations of w, e.g., $p_e \ge 1/\lambda_{\max}(A)$ [Hamilton & LPP, 2014]
 - With correlated errors [in progress]

Not clear if something similar can be done in the present case. **Need to come up with MF theory for percolation on hypergraphs**

¹⁴A good postdoc is needed to work on this, LDPC codes & related stat-mech!

