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Decoding threshold

Decoding threshold p.: Consider an infinite family of error
correcting codes. With probability p for independent errors per
(qu)bit, at p < p., a large enough code can correct all errors with
success probability P — 1, but not at p > p,.

Example: code family with finite relative distance 6 = d/n.
A code can detect any error involving w < d (qu)bits, and
distinguish between any two errors involving w < d/2 qubits
each. For such a family, p. > §/2.

In practice, this does not quite work since such codes have
stablizer generators of weight ~ n: measuring syndrome is hard

All known code families with finite-weight stabilizer generators

have distance scaling logarithmically or as a sublinear power of n.

Zero-rate codes: toric (Kitaev) Finite-rate: Tillich & Zémor 2009
color (Bombin et al.) Andriyanova et al. 2012
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Surface codes

Family of codes invented by Alexey Kitaev (orig: foric codes)

Stabilizer generators: plaquette A = ZZ 7 7 and vertex
B = X X X X operators (this 1s a CSS code).
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Surface codes

Family of codes invented by Alexey Kitaev (orig: foric codes)
Stabilizer generators: plaquette A = ZZ 7 7 and vertex
B = X X X X operators (this 1s a CSS code).

Detectable errors: have open X chains along dual lattice or open
Z chains on the original lattice
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Surface codes

Family of codes invented by Alexey Kitaev (orig: foric codes)
Stabilizer generators: plaquette A = ZZ 7 7 and vertex
B = X X X X operators (this 1s a CSS code).

Detectable errors: have open X chains along dual lattice or open
Z chains on the original lattice
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Surface codes

Family of codes invented by Alexey Kitaev (orig: foric codes)

Stabilizer generators: plaquette A = ZZ 7 7 and vertex
B = X X X X operators (this 1s a CSS code).

Detectable errors: have open X chains along dual lattice or open
Z chains on the original lattice

Undetectable error: only closed chains
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Surface codes: finite decoding threshold
Distance scales as d x n'/2, meaning zero relative distance
§ ox n~ 12, n — oo. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

e Counting topologically non-trivial chains
e Mapping to the Ising model with bond disorder
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Surface codes: finite decoding threshold
Distance scales as d x n'/2, meaning zero relative distance
§ ox n~ 12, n — oo. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

e Counting topologically non-trivial chains
e Mapping to the Ising model with bond disorder

Erasures: unrecoverable chain len. ¢ > d:

Lé.s.&.a.s.&* Q¢ < np'#(SAW,) < n (3p)*

o O o—0—0— .
.q ° f.o.o.o.o— Uncorrectable error: such a chain more
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General (h, w)-limited Q-LDPC codes

Example: hypergraph product code constructed from |7, 3, 4] cyclic code. Column
weights < h = 3, row weights < w = 6.
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\0 00000 1 1 0 0 0 0 0 « )
Observation: for small p, errors can be separated into clusters

which affect different subsets of generators.
Here, each qubit has up to z = h(w — 1) neighbors.

Formation of large clusters can be viewed as percolation on a
graph with vertex degrees bounded by z.



Threshold theorem and sparse-graph codes (cont’d)

e Start with a small per-qubit error probability p < 1.
e Connect errors affecting common gen- é ¢ o ¢ ¢ ¢ o
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Threshold theorem and sparse-graph codes (cont’d)

e Start with a small per-qubit error probability p < 1.
e Connect errors affecting common gen- ¢ ¢ o
erators. For small p and a sparse code

these form small disconnected clusters
e Key observation: disconnected clusters

can be detected independently; they do
not affect each other’s syndromes.
This implies that errors formed by clusters ¢ ,9,?,%,¢?
of weight w < d are all detectable




Threshold theorem and sparse-graph codes (cont’d)

e Start with a small per-qubit error probability p < 1.
e Connect errors affecting common gen- ¢
erators. For small p and a sparse code ¢°
these form small disconnected clusters ¢
:
@
o

e Key observation: disconnected clusters
can be detected independently; they do
not affect each other’s syndromes.

—@—1@
This implies that errors formed by clusters ) P P P P ¢

of weight w < d are all detectable

e Below percolation limit p., probability to have a cluster of
large weight w 1s exponentially small with w.

e Maximum cluster size grows logarithmically with n (for small
enough p this 1s also true for confusing half-filled clusters)

Conclusion: as long as d o< n®, a > 0 (or even logarithmic), a
sparse-graph code can correct errors at finite p. [Kovalev & LPP, *13]



Percolation-based threshold for quantum LDPC codes

Actual value of the threshold for erasures: p, > (z — 1)~ ! for
(h, w)-limited code. For depolarizing channel:
pa > [2e(z — 1)]2 (assuming power-law distance).

Here z = h(w — 1).

Trouble: This threshold 1s much weaker than what we have for
the toric codes (h = 2, w = 4), even though both thresholds are
related to percolation.

3% i%e Reason: This approximates code as a
qubit-connectivity graph. Any structure
associated with the action of generators 1s
ignored




Irreducible cluster counting algorithm

Definition 1 For a given stabilizer code, an undetectable
operator is called irreducible if it cannot be decomposed as a
product of two disjoint undetectable Pauli operators.

Algorithm for CSS code (X errors)

e Order the stabilizer generators; pick a starting bit (n choices)

e At each recursion step, deal with topmost “unhappy” stabilizer
generator and pick a bit among unselected points in its support
(up to w — 1 choices)

e Recursion stops when syndrome 1s zero (an undetectable oper-
ator 1s found), or when there are no more positions for a given
generator (have to go back).

e After m recursion steps, return all irreducible undetectable op-
erators of weight up to m. Complexity N,, = n (w — 1)™ 1

This gives upper bound for the number V,,, of irreducible logical
operators at m > d.



Toric code example

Reducible cluster will be returned or not, depending on the order
in which the numbered qubits are encountered
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Minimum-energy decoding

Let P(FE) be some error probability, energy e = — In P(F).

e For an (unknown) error F, let £’ be the minimum-energy error
with the same syndrome = E’ET is undetectable.

e Decompose E'ET =[] ; Jj into irreducible operators J;.

e Error found correctly if e(J; E) > e(E) for all .J; that are non-
trivial logical operators (.J; not 1n stabilizer)

Decoding 1s asymptotically correct at n — oo 1f the probability
for a ’bad” error for any irreducible J € C(S) \ S vanishes.

Let e(F) correspond to uniform uncorrelated errors. Then for a
given J, probability P, of bad error only depends on m = wgt J.

Example: Erasures with probability p. = P,,, = pl°.

n|(w — 1)pe]d
Total probability to fail: Pr; < Z PN < 1 (w —1)

— — pe
10 m>d




Improved cluster counting

For toric code, w = 4, and this bound 1s the same as
simple-minded walk counting (N,,, ~ n 3™ 1)

N
107 ¢
10° [[168,6,12]]
1000. [[2940,6,12]]
- » [[1508,100,6]]
_» [[12568,1006]]

2 4 6 8 10 12

Power-law scaling of V,,, for different codes — exponents can be
used for improved bounds, just like SAW exponent 1n the case of

the toric code [(r =~ 4.76. (- =~ 5.74. (<« = 5.79 and (o ~ 6.78]



Combination of erasures and independent X /7 errors

Combined erasures (probability p.) and X errors (probability p).

Probability of F: a erasures and b X errors in a cluster of size m:
PE _ (’I:)pg(l . pe)m—a (mb—a)pb(l o p)m—a—b.

Probability of J E (invert bits outside of the erasure):
Pigp = (Z%)pceb(l _ pe)m—a (mb—a) (1 . p)bpm—a—b.

Bad errors: P < Pjg, which gives m —a — 2b > 0.

Upper bound for bad error probability in a cluster of size m:
{pe 1 — DPe 4]9(1 o 1/2}m

With code distance scaling as a power law d > An®, a > 0,
minimum-energy decoding asymptotically successful if

Pe + (1 — pe)[4p(1 —p)]1/2 < (w—1)""
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Fault-tolerant case

With syndrome errors, use aux 3D code with CSS-like generators (analog of 3D line
matching): P = (Im @ Hrxny, Ry (m—1) ® I)
[RT](m—l)Xm ®In Im—l &) [HT]’I’LXT‘

I'm & Gr’ X719 0

(o] )

1
0 1 1

Degeneracy generator: () = (

Repetition code check matrix: [RT] (m—1)xm =

| o y

Bound the number of clusters of size m, with m, qubit errors:

N, < (1 )wmezn=ms

For combination of uncorrelated erasures (p.), depolarizing (p),
and syndrome errors, with distance d > D In n, we get

4lq(1 — q)]1/2 +wY <e /D,

Y =pe+ (1—pe) {%er? [‘g(l—p)}m}



Summary

e New analytic lower bound for the thresholds with minimum-energy decoder

— Same accuracy as counting SAWSs for the toric code

— Simple expressions for uncorrelated errors

— Phenomenological syndrome errors included on equal footing
— Way better than the old percolation-based bound

e Erasure threshold, e.g., p. > (w — 1)~ ! for CSS codes, also gives bounds:

— for code rate, using 1l — R > 2p. = R<1—2/(w —1)
— for codes with transverse logical ops in m th level of Clifford chierarcy, p. <
1/w [Yoshida & Pastawski (2014)]

e This corresponds to a bound on percolation of (binary) cycles on hypergraphs

e Yet percolation on a graph (like the old bound) can be also used:

— With large variations of w, e.g., pe > 1/Amax(A) [Hamilton & LPP, 2014]
— With correlated errors [in progress]

Not clear if something similar can be done in the present case.
Need to come up with MF theory for percolation on hypergraphs

1A good postdoc is needed to work on this, LDPC codes & related stat-mech!
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