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Motivation
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Goal: High-precision, robust control of realistic quantum-dynamical systems.   

 Real-world quantum control systems typically entail:  

⋮

 Noisy, irreversible open-system dynamics... 
 Imperfectly characterized dynamical models...
 Limited control resources...  

 Broad significance across coherent quantum sciences: 
 High-resolution imaging and spectroscopy... 
 Quantum chemistry and biology...
 Quantum metrology, sensing and identification...
 High-fidelity QIP, fault-tolerant QEC...

⋮
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 Real-world quantum control systems typically entail:  

⋮

 Noisy, irreversible open-system dynamics... 
 Imperfectly characterized dynamical models...
 Limited control resources...  

 Broad significance across coherent quantum sciences: 
 High-resolution imaging and spectroscopy... 
 Quantum chemistry and biology...
 Quantum metrology, sensing and identification ...
 High-fidelity QIP, fault-tolerant QEC...
 Engineering of novel quantum matter... 

Goal: High-precision, robust control of realistic quantum-dynamical systems.   

Poudel, Ortiz & LV,
Floquet Majorana flat bands,

 ArXiv:1412.2639
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The premise: Dynamical QEC 3/20

Key principle: Time-scale separation ⇒ 'Coherent averaging' 
Paradigmatic example: Spin echo   ⇔   Effective time-reversal          

            Hahn, PR 1950.

Open-loop Hamiltonian engineering [both closed and open systems]:
Dynamical control solely based on unitary control resources. 
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Simplest setting: Multi-pulse decoherence control for quantum memory ⇒ DD
            LV & Lloyd, PRA 1998.



  

The premise: Dynamical QEC 3/20

Key principle: Time-scale separation ⇒ 'Coherent averaging' 
Paradigmatic example: Spin echo   ⇔   Effective time-reversal          

   Key features: 'Non-Markovian' quantum dynamics

small parameter 

(1) Dynamical error suppression is achieved in a perturbative sense 

(3) Dynamical QEC is achievable without requiring 
      full/quantitative knowledge of error sources 
      [⇒ built-in robustness against 'model uncertainty']   

(2) Unwanted dynamics may include coupling to quantum bath 

Open-loop Hamiltonian engineering [both closed and open systems]:
Dynamical control solely based on unitary control resources. 

 QEC14 • ETH                                                                                                                                                                   2/18  

Simplest setting: Multi-pulse decoherence control for quantum memory ⇒ DD
            LV & Lloyd, PRA 1998.

            Hahn, PR 1950.



  

Quantum control tasks 

 Hamiltonian engineering techniques provide a versatile tool for dynamical control 
 and physical-layer decoherence suppression in a variety of QIP settings:
  

 Arbitrary state preservation ⇒ DQEC for quantum memory

 Quantum gate synthesis ⇒ DQEC for quantum computation 

✔ Pulsed DD – 'Bang-Bang' (BB) limit/instantaneous pulses   
✔ Pulsed DD – Bounded control ('Eulerian')/'fat' pulses
✔ Continuous-(Wave, CW) [always-on] DD

✔ Hybrid DD-QC schemes – BB, w or w/o encoding  
✔ Dynamically corrected gates (DCGs) – Bounded control only
✔ Composite pulses – Bounded control only 

 Quantum system identification ⇒ Dynamical control for signal/noise estimation  
✔ Signal reconstruction – dynamic parameter estimation ('Walsh spectroscopy')
✔ Spectral reconstruction – DD noise spectroscopy

 Hamiltonian synthesis ⇒ Dynamical control for quantum simulation
✔ Closed-system [many-body, BB and Eulerian] Hamiltonian simulation 
✔ Open-system [dynamically corrected] Hamiltonian simulation

⋮
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Time vs frequency domain: Filter transfer functions 

 Picture the control modulation as enacting a 'noise filter' in frequency domain: 

            Kurizki et al PRL 2001; Uhrig PRL 2007; Cywinski et al, PRB 2008; Khodjasteh et al, PRA 2011;
Biercuk et al, JPB 2011; Hayes et al, PRA 2011; Green et al, PRL 2012, NJP 2013; Kabytayev et al, PRA 2014...

 Simplest case: Single qubit under classical Gaussian dephasing, DD via perfect π pulses

FILTER 
FUNCTION (FF) 

 The larger the order of error suppression δ, the higher the degree of noise cancellation:
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Filter transfer function approach: Advantages... 

Hayes, Khodjasteh, LV & Biercuk, PRA 84 (2011).

 Direct contact with signal processing, [classical and quantum] control engineering...
 Simple analytical evaluation of control performance, compared to numerical simulation... 
 Natural starting point for analysis and synthesis of control protocols tailored to 
     specific spectral features of generic time-dependent noise... 

HIGH-PASS NOISE 
FILTERING  
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Filter transfer function approach: Validation...

Soare et al, Nature Phys. (Oct 2014).

 Control objective: noise-suppressed single-qubit π rotations under [non-Markovian] 
     amplitude control noise ⇒ Generalized FF formalism. 
 Control protocols: [NMR] composite-pulse sequences.      
 Quantitative agreement with analytical FF predictions observed in the weak-noise limit.

Green et al, PRL 2012, NJP 2013.
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Filter transfer function approach: Assessment... 

 Major limitation of current generalized FF (GFF) formalism: 
 High-order GFFs are given in terms of an infinite recursive hierarchy – awkward!
   Explicit calculations to date ⇒ Single-qubit controlled dynamics under classical noise: 

     lowest-order fidelity estimates, Gaussian [stationary] noise statistics... 
…
 Higher-order terms are [already] of relevance to quantum control experiments...
 What about general [quantum and/or non-Gaussian] noise models?... 
 What about general target [multi-qubit] systems?...
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Filter transfer function approach: Next steps... 

 Major limitation of current generalized FF (GFF) formalism: 
 High-order GFFs are given in terms of an infinite recursive hierarchy – awkward!
  

Challenge: 
To build a general theory for open-loop noise filtering in non-Markovian quantum systems.  

 Assuming that a general frequency-domain description is viable, to what extent     
 will it be equivalent to the time-domain description...
  

 Explicit calculations to date ⇒ Single-qubit controlled dynamics under classical noise: 
     lowest-order fidelity estimates, Gaussian [stationary] noise statistics... 
…
 Higher-order terms are [already] of relevance to quantum control experiments...
 What about general [quantum and/or non-Gaussian] noise models?... 
 What about general target [multi-qubit] systems?...

 How to rigorously characterize the filtering capabilities of a control protocol?... 
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Control-theoretic setting: System and noise

 

Target 
System

Controlled 
Dynamics

Environment

Classical 
Controller

 Target system S (finite-dim) coupled to quantum or classical environment [bath] B:

 Environment B is uncontrollable ⇒ Controller acts directly on S alone:

with respect to interaction picture defined by                  .   

 Classical noise formally recovered for                              [stochastic time-dependence]

 Evolution under ideal Hamiltonian over time T  yields the desired unitary gate     on S
     (e.g.,                for DD).
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Control-theoretic setting: Isolating the noise

 

Target 
System

Controlled 
Dynamics

Environment

Classical 
Controller

 Total [joint] propagator may be exactly expressed in terms of 'error propagator':

 Choose an Hermitian operator basis on S, 

 Error propagator may be formally computed via a Magnus series expansion:

target-dependent
control matrix

 α-th order Magnus term Ωα(T) involves α-th order nested commutators of  
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Cancellation order in time domain 

 Magnus series has traditionally been used to characterize error-suppression properties
 of a control protocol in the time domain:

 Definition.  A control protocol specified by               achieves cancellation order (CO) δ 
 if the norm of the error action operator              [up to pure-bath terms] is reduced, 
 such that the leading-order correction mixing S and B scales as 

 Strategy: [perturbatively] minimize the sensitivity of the controlled evolution to   
 by making              as close as possible to a 'pure-bath' evolution [identity on S...]

 CO = Standard 'decoupling order' for a DD protocol (e.g., CDD, WDD, UDD...) 

Khodjasteh, Lidar & LV, PRL 2010; Khodjasteh, Bluhm & LV, PRA 2012.  
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Generalized filter functions-1 

 GFFs may be most generally defined directly at the level of the effective Hamiltonian:

 Express each             in the α-th order term wrto the chosen operator basis: 

 Express each bath variable in terms of corresponding frequency-Fourier transform:
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Generalized filter functions-1 

Meaning: α-th order GFF describes the filtering effect of the applied control on  
                 the corresponding 'operator string' in the α-th order Magnus term.   

 GFFs may be most generally defined directly at the level of the effective Hamiltonian:

 Express each             in the α-th order term wrto the chosen operator basis: 

 Express each bath variable in terms of corresponding frequency-Fourier transform:
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Generalized filter functions-2 

 GFFs naturally appear in the reduced (or ensemble-averaged ) system dynamics:

 Work in a basis where      is diagonal and assume initial S-B factorization:

 By Taylor-expanding                                                    and using the definition of GFFs,
     a common structure may be identified in each contributing term:   

⇒ related to high-order noise power spectra 
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Generalized filter functions-2 

 GFFs naturally appear in the reduced (or ensemble-averaged ) system dynamics:

 Work in a basis where      is diagonal and assume initial S-B factorization:

 By Taylor-expanding                                                    and using the definition of GFFs,
     a common structure may be identified in each contributing term:   

 Example: 
 BB DD of a single-qubit under Gaussian, stationary dephasing noise [again!]

⇒ related to high-order noise power spectra 

,
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Fundamental filter functions 

 Key insight: GFFs share a common structure, determined by [infinite in general, but] 
 easily computable set of 'elemental' FFs ⇒ fundamental filter functions (FFFs):

 QEC14 • ETH                                                                                                                                                                 13/18  



  

Fundamental filter functions 

 Key insight: GFFs share a common structure, determined by [infinite in general, but] 
 easily computable set of 'elemental' FFs ⇒ fundamental filter functions (FFFs): 

 Theorem: Arbitrary GFFs of order                                  may be exactly represented as 

 Proof follows from exact relationship between Magnus and Dyson series expansion. 

Key point: Arbitrary high-order GFFs are explicitly, non-recursively computable 
                   as combinations of FFFs of same and lower order.    
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Filtering order in frequency domain

 Complete information about filtering behavior is encoded in principle in the set of 
 all 'relevant' GFFs –                                in at least one factor [no pure-bath evolution]. 

Question: To what extent do FFFs characterize filtering properties of a protocol?

 For each GFF [FFF], define generalized [fundamental] CO and filtering order (FO) as 
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Filtering order in frequency domain

 Definition.  For a control protocol specified by             , the generalized and fundamental 
 cancellation order Δ and δ are given by the minimum over all the relevant GFFs/FFFs:  

 Complete information about filtering behavior is encoded in principle in the set of 
 all 'relevant' GFFs –                                in at least one factor [no pure-bath evolution]. 

Question: To what extent do FFFs characterize filtering properties of a protocol?

 For each GFF [FFF], define generalized [fundamental] CO and filtering order (FO) as 

The generalized and fundamental filtering order Φ and ϕ at level κ are given by the 
minimum over all the relevant GFFs/FFFs up to Magnus order κ:  
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Filtering vs. cancellation order 

 Theorem: The generalized and fundamental FO and CO are related in general as follows:

Key point 1: Access to FFFs suffices to fully characterize the CO and FO that protocol 
                      can guarantee under minimal assumptions on the noise model.    

 Higher effective CO and FO are possible given specific knowledge on the noise model.  

 Level-κ FOs are not a priori constrained, and the inequality at κ = ∞ can be strict. 

Key point 2: Cancellation and filtering are in general two inequivalent notions.
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Case study: Dynamical decoupling 

 Simplest setting: Single-axis control protocols ⇒ 
 Ideal, single-qubit DD in the presence of arbitrary, non-Gaussian dephasing 

Claim: Arbitrarily high-order filtering may be achieved for ideal single-axis DD 
            via concatenation, CO = δ = ϕ[∞] = FO for CDDδ.

 This feature is not generic to high-order DD protocols!  E.g. δ-th order Uhrig DD:
                                     CO = δ,   FO = ϕ[∞] ≤ 1 or 2 for UDDδ, δ ≤ 8.
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Case study: Dynamical decoupling 

 Simplest setting: Single-axis control protocols ⇒ 
 Ideal, single-qubit DD in the presence of arbitrary, non-Gaussian dephasing 

Claim: Arbitrarily high-order filtering may be achieved for ideal single-axis DD 
            via concatenation, CO = δ = ϕ[∞] = FO for CDDδ.

 This feature is not generic to high-order DD protocols!  E.g. δ-th order Uhrig DD:
                                     CO = δ,   FO = ϕ[∞] ≤ 1 or 2 for UDDδ, δ ≤ 8.

 Illustrative toy models: 

Inversion of performance 
at low frequencies, due to 
high-order Magnus terms  

CDD
3
: CO = 3, FO =3  

UDD
4
: CO = 4, FO = 2
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Further examples

 General case: Multi-axis control protocols  
 E.g., DD with imperfect/bounded control, DCGs, composite pulses...   

Claim: A protocol which does not achieve perfect cancellation of arbitrary 
            quasi-static noise has vanishing FO, ϕ[∞] = 0.

Meaning: Arbitrarily high-order filtering is too strong
a requirement – finite-κ filtering is relevant in practice.  
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Further examples

 General case: Multi-axis control protocols  
 E.g., DD with imperfect/bounded control, DCGs, composite pulses...   

Claim: A protocol which does not achieve perfect cancellation of arbitrary 
            quasi-static noise has vanishing FO, ϕ[∞] = 0.

Meaning: Arbitrarily high-order filtering is too strong
a requirement – finite-κ filtering is relevant in practice.  

 Distinction between CO and FO is relevant to current 
     quantum-control experiments and [already] informing 
     novel approaches to control synthesis...

SK1:  CO = 1, FO = 1
BB1:  CO = 2, FO = 1 

 Illustrative example: NMR composite-pulse sequences 

Soare et al, Nature Phys. (Oct 2014).
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Conclusion and outlook

 A general, computationally tractable approach to open-loop noise filtering in 
[non-Markovian] open quantum systems is possible based on identifying a set of 
fundamental FFs – out of which arbitrary generalized FFs may be directly assembled. 

 Fundamental FFs suffice to characterize the error-suppression capabilities in both 
 the time and frequecy domain under minimal assumptions on the noise model. 

 Order of error cancellation [a-la-Magnus] and order of filtering are in general two 
 inequivalent and potentially equally relevant notions for time-dependent noise. 
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Conclusion and outlook

 A general, computationally tractable approach to open-loop noise filtering in 
[non-Markovian] open quantum systems is possible based on identifying a set of 
fundamental FFs – out of which arbitrary generalized FFs may be directly assembled. 

Paz-Silva, S.-W. Lee, T. J. Green & LV, forthcoming.

 Fundamental FFs suffice to characterize the error-suppression capabilities in both 
 the time and frequecy domain under minimal assumptions on the noise model. 

 Order of error cancellation [a-la-Magnus] and order of filtering are in general two 
 inequivalent and potentially equally relevant notions for time-dependent noise. 

 Additional investigation is needed to appreciate the full theoretical and experimental 
 significance of filtering perspective for open-loop quantum control:
 Multi-qubit DD/long-time quantum-memory settings;

 Analytical and/or numerical synthesis of 'customized' noise filters;
 Protocols for non-Gaussian noise identification/sensing;

 Implications for [non-Markovian] quantum fault tolerance?...
⋮
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Paz-Silva, L. Norris & LV, forthcoming.
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