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Self-correcting memory

Self-correcting memory = physical system
which encode (quantum) information
• reliably
• for a macroscopic period of time
• letting the memory interact with its environment (thermal noise)
• without active error correction

Encoding

DecodingNoise
| f i| ii | 0

ii

Typically, the degenerate groundspace of a local Hamiltonian 
of spin particles (qudits) on a 2D/3D lattice.

Code = subspace of dim. >1 whichs encodes the quantum information.
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Self-correcting quantum memory

Quantum system with a degenerate groundspace.

Desiderata

(ii) Robustness to local perturbations

(i) Thermal stability

Memory time grows unbounded as system size L gets larger.

Degeneracy of the ground space cannot be lifted by local perturbation.

➡ must be true for exact Hamiltonian but also under local perturbation

Thermal stability for exact H + robustness to local perturbations 
is sufficient for gapped system.

Robustness to local perturbations for gapped system?

⌧mem⇠ eL
(⇠ poly(L))or
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Robustness to local perturbations

➡No degeneracy lifting

➡Gap does not close

Local commuting projector code (LCPC)

• projectors
• terms commute
• local
• frustration-free

[PX , PY ] = 0

diam(X) � w ) PX = 0

N d-dim. spin particles (qudits) located on the vertices of a lattice  ⇤

(PX)2 = PXH = �
X

X⇢⇤

PX

8X PX |⌦i = +|⌦i

Spectrum of LCPC Hamiltonian is stable 
if the Hamiltonian is topologically ordered.

Bravyi, Hastings, Michalakis.  
J. Math. Phys. 51 093512 (2010)

Remark: the op. norm of the perturbation 
grows with system size. kV k = LDkVXk

E0

E1

E2

E

✏

Local perturbation H ! H + ✏
X

X⇢⇤
diam(X)<w

VX
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2D topological systems are thermally unstable

Point-like excitations = anyons

Non-zero temperature: finite density of anyons

➡ (1) constant energy cost to create pair of anyons

Anyons propagate at no energy cost (thermal deplacement)

➡ (2) no energy cost to propagate anyons

Memory time is a constant, independent of system size.
R. Alicki, M. Fannes, and M. Horodecki, 

J. Phys. A: Math. Gen. 42, 065303 (2009). 

2D toric code A. Y. Kitaev, Ann. Phys. 303, 2 (2003). 

End points of string logical operator
[H, T ] = 0

How to avoid  points (1) and (2)?
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Effective long-range interactions between anyons
Couple the topological system to an auxiliary bath

H = �
X

X⇢⇤

PX ⌦ IA +
X

X⇢⇤

gXPX ⌦⇥X + IS ⌦HA

2

O(ln L). This is useful since imperfections in the initial-
ization process might lead to a finite initial density of
anyons.

Furthermore, we argue that a toric code coupled to a
3D Heisenberg ferromagnet in a broken-symmetry state
provides a way to realize the proposed Hamiltonian as an
e↵ective low-energy theory of a spin-lattice model with
bounded operators only.

Finally, we discuss the delicate issue of the stability of
topological order in our model. While we do not derive
a rigorous proof of topological order, we present heuris-
tic arguments suggesting that topological order remains
intact when perturbative operators acting on the toric
code spins are coupled to the bosonic environment.

The paper is organized as follows. In Sec. II we in-
troduce our model for a toric code embedded in a three-
dimensional cubic lattice of hopping bosons. The sta-
bilizer operators are locally coupled to the displacement
operator of the bosonic field. In Sec. II A we state that
the energetics of the anyon system is accurately described
by a Hamiltonian HW with long-range attractive interac-
tions between the stabilizers. This is valid as long as the
bosons are in thermal equilibrium with the state of the
anyons. We then derive the main result of our work: the
energy penalty to slowly create an anyon grows linearly
with L. We rigorously prove in Sec. II B that the energet-
ics of the anyons is indeed described by HW . In Sec. II C
we consider the fast creation of anyons. We show that
the enegy to create an anyon fast is higher than the en-
ergy to create it slowly; the energy penalty to create a
defect grows in any case linearly with L. In Sec. III we
consider a slightly di↵erent model where the stabilizers
are locally coupled to the bosonic density operator. This
model cannot be treated exactly and we solve it with a
perturbative Schrie↵er-Wol↵ transformation. We show
that the energy penalty to create an anyon scales as ln L
in this case. In Secs. IV A and IV B we show that an
energy penalty for the anyons scaling with L and ln L
leads to a lifetime of the toric growing respectively expo-
nentially with L and polynomially with L. In Section VI
we mention a possible implementation of our model in a
Heisenberg ferromagnet. Section VII contains our final
remarks and in particular a discussion of the stability of
topological order. Appendix A contains a short review of
the Schrie↵er-Wol↵ transformation. In Appendix B we
calculate all the higher moments (n � 2) of the distri-
bution of energy costs to create an anyon and show that
they are all independent of L. In Appendix C we show
that the the continuum approximation used in the main
text is just a calculational tool that has no influence on
the validity of our results.

II. COUPLING TO THE BOSONIC
DISPLACEMENT OPERATOR

We present here a model that involves only local in-
teractions of bounded strength in three dimensions. We

consider a toric code embedded in a 3D cubic lattice of
hopping bosons, see Fig. 1. The stabilizer operators of
the toric code are locally coupled to the creation and an-
nihilation operators of the bosons and the total Hamil-
tonian reads

H = H
b

+ A
X

p

Wp(ap + a†
p) , (1)

where the sum runs over the toric code. We denote the
linear size of the cubic lattice by ⇤. Here, the plaquette
(stabilizer) operator Wp = Iz

p,1I
y
p,2I

z
p,3I

y
p,4 is the poduct of

spins around the square plaquette centered at Rp, which
are defined on a square lattice of linear size L with peri-
odic boundary conditions (we set the lattice constant to
unity). To avoid boundary e↵ects we assume ⇤ > L. The
3D vector Rp points towards the center of a plaquette,
see Fig. 1. Note that this definition of Wp ensures that
the blue and white plaquettes are equivalent to the usual
toric code star and plaquette operators [1]. The anyon
operator np is defined through Wp = 1 � 2np. In other
words, when Wp = +1, the plaquette p carries no anyon
and when Wp = �1, the plaquette p carries an anyon.
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FIG. 1. (Color online.) A 2D toric code (blue (dark) area in
xy-plane) of size L⇥L is centered inside a cubic lattice of size
⇤3 with ⇤ > L. The stabilizers Wp of the toric code locally
couple to a system of hopping bosons on a cubic lattice. A
long-range attraction between the stabilizers is mediated by
the low-energy collective excitations of the bosons.

The Hamiltonian for the bosons

H
b

= ✏0
X

i

a†
iai � t

X

hi,ji

a†
iaj , (2)

describes bosons hopping on a cubic lattice with hopping
amplitude t and on-site chemical potential ✏0 = 6t. Here,

Hamma, Castelnovo, Chamon. 
PRB 79, 245122 (2009)

Toric-boson model

Chesi, Röthlisberger, Loss. PRA 82, 022305 (2010)

Repulsive interaction

Pedrocchi, Hutter, Wootton, Loss. 
PRA 88, 062313 (2013)

Coupling to free bosons

2 effects
1. Enhanced chemical potential
2. Attractive potential, i.e., energy penalty to propagation

H = Hb +A
X

p

Wp ⌦ (ap + a†p)

Hb = ✏0
X

i

a†iai � t
X

hi,ji

a†iaj

µ(L) ⇠ L
H = �

X

p,p0

Jp,p0WpW
0
p +H 0

b

Jp,p0 =
A2

|rp � rp0 |
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Chemical potential

What are the logical operators of the coupled system?

➡ Logical operators    of the topological system since [T, PX ] = 0T

H = �
X

X⇢⇤

PX ⌦ IA +
X

X⇢⇤

gXPX ⌦⇥X + IS ⌦HA

PX

µ(L) / Tr [⇥X⇢⌦]

Auxiliary system is in thermal equilibrium ⇢⌦ = e��H⌦/Tr
⇥
e��H⌦

⇤

Auxiliary system is in thermal equilibrium

with effective Hamiltonian h⌦|H|⌦i

Chemical potential

Pedrocchi, Hutter, Wootton, Loss. 
PRA 88, 062313 (2013)

µ(L) ⇠ L

If bath operator are unbounded, the chemical potential can diverge.
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Diverging chemical potential

⇥X =
X

a

�a|aiha|

µ(L) / Tr [⇥X⇢⌦]Chemical potential

Correlation length of the 
auxiliary bath diverges.
➡ gapless auxiliary bath

pa / ha|e��H⌦ |ai

L

pa

�a

2

O(ln L). This is useful since imperfections in the initial-
ization process might lead to a finite initial density of
anyons.

Furthermore, we argue that a toric code coupled to a
3D Heisenberg ferromagnet in a broken-symmetry state
provides a way to realize the proposed Hamiltonian as an
e↵ective low-energy theory of a spin-lattice model with
bounded operators only.

Finally, we discuss the delicate issue of the stability of
topological order in our model. While we do not derive
a rigorous proof of topological order, we present heuris-
tic arguments suggesting that topological order remains
intact when perturbative operators acting on the toric
code spins are coupled to the bosonic environment.

The paper is organized as follows. In Sec. II we in-
troduce our model for a toric code embedded in a three-
dimensional cubic lattice of hopping bosons. The sta-
bilizer operators are locally coupled to the displacement
operator of the bosonic field. In Sec. II A we state that
the energetics of the anyon system is accurately described
by a Hamiltonian HW with long-range attractive interac-
tions between the stabilizers. This is valid as long as the
bosons are in thermal equilibrium with the state of the
anyons. We then derive the main result of our work: the
energy penalty to slowly create an anyon grows linearly
with L. We rigorously prove in Sec. II B that the energet-
ics of the anyons is indeed described by HW . In Sec. II C
we consider the fast creation of anyons. We show that
the enegy to create an anyon fast is higher than the en-
ergy to create it slowly; the energy penalty to create a
defect grows in any case linearly with L. In Sec. III we
consider a slightly di↵erent model where the stabilizers
are locally coupled to the bosonic density operator. This
model cannot be treated exactly and we solve it with a
perturbative Schrie↵er-Wol↵ transformation. We show
that the energy penalty to create an anyon scales as ln L
in this case. In Secs. IV A and IV B we show that an
energy penalty for the anyons scaling with L and ln L
leads to a lifetime of the toric growing respectively expo-
nentially with L and polynomially with L. In Section VI
we mention a possible implementation of our model in a
Heisenberg ferromagnet. Section VII contains our final
remarks and in particular a discussion of the stability of
topological order. Appendix A contains a short review of
the Schrie↵er-Wol↵ transformation. In Appendix B we
calculate all the higher moments (n � 2) of the distri-
bution of energy costs to create an anyon and show that
they are all independent of L. In Appendix C we show
that the the continuum approximation used in the main
text is just a calculational tool that has no influence on
the validity of our results.

II. COUPLING TO THE BOSONIC
DISPLACEMENT OPERATOR

We present here a model that involves only local in-
teractions of bounded strength in three dimensions. We

consider a toric code embedded in a 3D cubic lattice of
hopping bosons, see Fig. 1. The stabilizer operators of
the toric code are locally coupled to the creation and an-
nihilation operators of the bosons and the total Hamil-
tonian reads

H = H
b

+ A
X

p

Wp(ap + a†
p) , (1)

where the sum runs over the toric code. We denote the
linear size of the cubic lattice by ⇤. Here, the plaquette
(stabilizer) operator Wp = Iz

p,1I
y
p,2I

z
p,3I

y
p,4 is the poduct of

spins around the square plaquette centered at Rp, which
are defined on a square lattice of linear size L with peri-
odic boundary conditions (we set the lattice constant to
unity). To avoid boundary e↵ects we assume ⇤ > L. The
3D vector Rp points towards the center of a plaquette,
see Fig. 1. Note that this definition of Wp ensures that
the blue and white plaquettes are equivalent to the usual
toric code star and plaquette operators [1]. The anyon
operator np is defined through Wp = 1 � 2np. In other
words, when Wp = +1, the plaquette p carries no anyon
and when Wp = �1, the plaquette p carries an anyon.
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FIG. 1. (Color online.) A 2D toric code (blue (dark) area in
xy-plane) of size L⇥L is centered inside a cubic lattice of size
⇤3 with ⇤ > L. The stabilizers Wp of the toric code locally
couple to a system of hopping bosons on a cubic lattice. A
long-range attraction between the stabilizers is mediated by
the low-energy collective excitations of the bosons.

The Hamiltonian for the bosons

H
b

= ✏0
X

i

a†
iai � t

X

hi,ji

a†
iaj , (2)

describes bosons hopping on a cubic lattice with hopping
amplitude t and on-site chemical potential ✏0 = 6t. Here,

Is the chemical potential scaling 
robust to perturbations?
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Chemical potential under perturbations?

For topological system

|µ(✏)� µ(0)|  ↵✏µ(0)

E0

E1

E

✏

lim
✏!0

µ(✏)

µ(0)
= 1

Topological system coupled to a gapless auxiliary bath

E0

E1

E

S

µ(L) lim
✏!0

lim
L!1

µ(L, ✏)

µ(L, 0)
?
= c
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Perturbations on the Hamiltonian of the auxiliary system

H ! H + ✏
X

X

PX ⌦Q[⇥X ]

HA ! HA + ✏
X

X

Q[⇥X ]

or H⌦ ! H̃⌦ = H⌦ + ✏
X

X

Q[⇥X ]

Q is a polynomial, e.g.,                      or higher power.                      Q[⇥X ] = ⇥2
X

⇥X =
X

a

�a|aiha|

pa / ha|e��H⌦ |ai p̃a / pae
�✏�Q[�a]

Golden-Thompson

In the limit of large system size, 
the chemical potential is 
bounded by a constant 
independent of system size.

1
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What we would like to prove

H + ✏V2

H + ✏V1H
Some perturbations will not change 
the scaling of the chemical potential.

Is there always a perturbation that reduces 
the chemical potential to a constant?

9V 8✏ > 0 lim
L!1

µ(L, ✏) 2 R ???

Could not prove it in the general case.

H = �
X

X⇢⇤

PX ⌦ IA +
X

X⇢⇤

gXPX ⌦⇥X + IS ⌦HA

Cases for which we can prove the existence of a suitable perturbation.

• Commuting case                      (+ Gaussian approximation)[H, ⇥] = 0

• Massless scalar field + linear coupling
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Commuting case + Gaussian approximation

h⇥i✏ ⌘
Tr

⇥
e��(H⌦+✏V )⇥

⇤

Tr
⇥
e��(H⌦+✏V )

⇤We are interested in the behavior of

[H, ⇥] = 0
d

d✏
h⇥i✏ = �h⇥Q[⇥]i✏ + h⇥i✏hQ[⇥]i✏

Gaussian 
approximation h(⇥� h⇥i✏)2k+1i✏ = 0

h⇥i✏
h⇥i0

= exp

✓
�2

Z ✏

0
V(u)du

◆

d

d✏
h⇥i✏ = �2h⇥i✏

�
h⇥2i✏ � h⇥i2✏

�

h⇥i✏
h⇥i0

' 1p
1 + 8✏V0h⇥i20

Q[⇥] = ⇥2

Quadratic perturbation

Q[⇥] = ⇥4

Quartic perturbation

�! 0
L ! 1

Extension to non-commuting case?
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Field theory perspective: massless scalar bosons

✏0 = 6tFine-tuning condition

H = Hb +A
X

p

Wp ⌦ (ap + a†p)

Hb = ✏0
X

i

a†iai � t
X

hi,ji

a†iaj

Lattice model

H =

Z
dDx

✓
1

2
(r�)2 � w(x)�(x)

◆

Field theoretic model

r� =
X

p02N (p)

✓p0 � ✓p

1

2
(r�)2 = 6

X

p

a†pap �
X

p02N (p)

a†pap0 + higher order terms

QFT calculations
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Perturbation gives mass to particles

Bosons become massive.
➡Effective interaction becomes 
    short-ranged

High occupation of bosonic 
modes is energetically penalized
➡Effective cutoff
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Lattice model

Can we find physical systems where 
i) the masslessness of bosons is protected by symmetry?
ii) the chemical potential diverges with system size?
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Systems with symmetry protection

Jrr0 /
1

|r � r0|↵
• Gauge bosons, e.g. photons
• Goldstone bosons, e.g. phonons

D

↵

Tc = 0µ(L) 2 O(1)

µ(L) ⇠ ln(L) ⌧mem ⇠ poly(L) Tc 2 O(1)

↵ < D

↵ > D

µ(L) ⇠ LD�↵ Tc = 1

• Photons : coupling to charge
➡ charged anyons?
➡ Fractional quantum Hall effect
➡ Screening effects, stability?

• Phonons 
➡ derivative coupling to anyons
➡ ↵ = 3

See discussion in Bonderson and Nayak PRB 87 195451  
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Conclusion

Introducing long-range interactions to stabilize quantum memories

General issue: can it be done in a way that is robust to perturbations?

In some cases, perturbations
• of the coupling between the topological system and the auxiliary bath
• of the Hamiltonian of the auxiliary bath
lead to change in the scaling of the chemical potential of the model.

Our work emphasizes the non-trivial interplay between robustness to 
perturbations and thermal stability in those proposals.

Thank you for your attention!
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