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Review definitions of operator quantum privacy and error
correction

Complementary between privacy and error correction

Restrictions of operator quantum privacy

Generalized notion of subsystem privacy

Recovering the duality with quantum error correction



Private quantum
subsystems and
error correction

Tomas Jochym-
O’Connor

Privacy & error
correction

Restrictions of
operator privacy

Generalization of
subsystem privacy

Extended duality

Notation

Subsystems: S = (A⊗B)⊕ (A⊗B)⊥

Density matrices: Bounded linear operators with trace 1,
σA ∈ A, σB ∈ B, ρ ∈ A⊗B
Quantum channel: Completely positive trace preserving map
between linear operators, Φ : B(A)→ B(C)

Complementary channel: Given a quantum channel Φ, there
always exists a unitary UΦ and ancillary state |φ〉〈φ|K such that

Φ(ρA) = TrK
(
UΦ(ρA ⊗ |φ〉〈φ|K)U†Φ

)
, ∀ ρi. The

complementary channel is then defined as:

Φ](ρ) = TrC
(
UΦ(ρ⊗ |φ〉〈φ|K)U†Φ

)
.
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Operator QEC and privacy

S = (A⊗B)⊕ (A⊗B)⊥

A subsystem B is an operator private subsystem for Φ if there
exists ρ0 such that

Φ(σA ⊗ σB) = ρ0, ∀σA, σB

A subsystem B is operator quantum error correctable for E if
there exist τA(σA), R such that

R ◦ E(σA ⊗ σB) = τA ⊗ σB
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Random Unitary channels

What type of channels are required to privatize quantum information?

In classical communication, messages can be encrypted using a
one-time pad.

Message: 1 0 0 1 1 1 

Encryption: X X X I X I 

Sent message: 0 1 1 1 0 1 

1 0 0 1 1 1 : Final Message 

X X X I X I : Decryption 

0 1 1 1 0 1 : Received Message 
!"#$%&'$()*+""$,(

The key property of the one-time pad is the uniform randomization of
each of the bits of the message.
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Random Unitary channels

What type of channels are required to privatize quantum information?

In classical communication, messages can be encrypted using a
one-time pad.

Message: 1 0 0 1 1 1 

Encryption: X X X I X I 

Sent message: 0 1 1 1 0 1 

1 0 0 1 1 1 : Final Message 

X X X I X I : Decryption 

0 1 1 1 0 1 : Received Message 
!"#$%&'$()*+""$,(

The key property of the one-time pad is the uniform randomization of
each of the bits of the message.
The state of any given bit of encrypted data xb is given by a classical
probability distribution:

Φ(xb) =
1

2
xb +

1

2
xb
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Random Unitary channels

What type of channels are required to privatize quantum information?

In classical communication, messages can be encrypted using a
one-time pad.

Message: 1 0 0 1 1 1 

Encryption: X X X I X I 

Sent message: 0 1 1 1 0 1 

1 0 0 1 1 1 : Final Message 

X X X I X I : Decryption 

0 1 1 1 0 1 : Received Message 
!"#$%&'$()*+""$,(

Random unitary channels provide the quantum analogue to the
classical one-time pad,

Φ(ρ) =
∑
i

piUiρU
†
i
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Operator duality

Theorem (KKS081)

A subsystem B is an operator private subsystem for a channel Φ if
and only if it is operator QEC for the complementary channel Φ].

⇢

|aiha|
U�

�(⇢)

�](⇢)

1D. Kretschmann, D. W. Kribs, R. Spekkens, (2008)
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Quest for small private channels

Inspiration from quantum error correction!

The dephasing channel is not private on a single qubit:

Λi(ρ) =
1

2
(ρ+ ZiρZi) ∀ρ ∈ S.

How about the same identical channel on multiple qubits?

Λ(ρ) = Φ2 ◦ Φ1(ρ)

The resulting mapping yields:
α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 Λ−→


α00 0 0 0
0 α11 0 0
0 0 α22 0
0 0 0 α33
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No-go result for private subspaces

Theorem (JKLP132)

Let Φ(ρ) =
∑

i piUiρU
†
i be a random unitary channel with mutually

commuting Kraus operators. Then Φ has no private subspace.

A subsystem B is an operator private subsystem for Φ if there
exists ρ0 such that

Φ(σA ⊗ σB) = ρ0, ∀σA, σB

A subsystem B is an operator private subsystem for Φ if there
exists ρ0 such that

Φ(σA ⊗ |ψ〉〈ψ|) = ρ0, ∀σA, |ψ〉〈ψ|

Therefore, the channel Λ = Λ2 ◦ Λ1 cannot be operator quantum
private

2TJ, D. W. Kribs, R. Laflamme, S. Plosker (2013)
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However...

Consider the following encoding of a quantum state:

ρL =
1

2
(I + αXX + βY I + γZX).

ρL is privatized by the channel Λ = Λ2 ◦ Λ1. A contradiction?

It can be shown that the state space defined by the
parameters α, β, γ is unitarily equivalent to I2 ⊗D2, where D2

is the space of 2-dimensional density matrices.
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Where is the loophole?

Λ privatizes the state space I2 ⊗D2, why is this not equivalent to
operator privacy?
A subsystem B is an operator private subsystem for Φ if there
exists ρ0 such that

Φ(σA ⊗ σB) = ρ0, ∀σA, σB

Therefore, fixing the state σA = I2, is what allows the channel to be
private, suggesting a new notion of privacy, private quantum
channels.
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The role of a fixed ancilla

A subsystem B is a private quantum subsystem3 for Φ if there
is a ρ0 ∈ S and σA ∈ A such that

Φ(σA ⊗ σB) = ρ0, ∀σB ∈ B

The conjugate channel to the multi-qubit phase damping
channel Λ = Λ2 ◦ Λ1 cannot be operator quantum error
correctable. In fact, it is private for the same encoding space.

ρ′

U

Z
Λ(ρ′ ⊗ I

2
)

I

2
Z

|+〉〈+| •
Λ](ρ′ ⊗ I

2
)|+〉〈+| •


3S. D. Bartlett, T. Rudolph, R. W. Spekkens (2004)
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What happens to the duality with error correction?

The mixed state ancilla is the resource allowing for privacy of the
channel.

ρ′

U

Z
Λ(ρ′)

|0〉〈0| �������� Z

|+〉〈+| • Mixing ancilla

|+〉〈+| •
Λ](ρ′)|+〉〈+| •
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What happens to the duality with error correction?

The mixed state ancilla is the resource allowing for privacy of the
channel.

ρ′

U

Z
Λ(ρ′)

|0〉〈0| �������� Z

|+〉〈+| •
|+〉〈+| • Λ̃(ρ′)
|+〉〈+| •


The generalized complementary channel Λ̃ must be quantum error
correctable by the operator duality that exists on the extended
Hilbert space.
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Additional degrees of freedom

Operator Generalized

α |0L〉12 →
∑
ij

|ij〉12 |E0
ij〉K α |0L〉123 →

∑
ijk

|ijk〉123 |E0
ijk〉K

β |1L〉12 →
∑
ij

|ij〉12 |E1
ij〉K β |1L〉123 →

∑
ijk

|ijk〉123 |E1
ijk〉K
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Additional degrees of freedom

Operator Generalized

α |0L〉12 →
∑
ij

|ij〉12 |E0
ij〉K α |0L〉123 →

∑
ijk

|ijk〉123 |E0
ijk〉K

β |1L〉12 →
∑
ij

|ij〉12 |E1
ij〉K β |1L〉123 →

∑
ijk

|ijk〉123 |E1
ijk〉K

|ij〉〈kl|12TrE
(
|α|2|E0

ij〉〈E0
kl|

+ αβ∗|E0
ij〉〈E1

kl|
+ α∗β|E1

ij〉〈E0
kl|

+ |β|2|E1
ij〉〈E1

kl|
)

=⇒ 〈E0
ij |E0

kl〉 = 〈E1
ij |E1

kl〉,
〈E0

ij |E1
kl〉 = 0
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Additional degrees of freedom

Operator Generalized

α |0L〉12 →
∑
ij

|ij〉12 |E0
ij〉K α |0L〉123 →

∑
ijk

|ijk〉123 |E0
ijk〉K

β |1L〉12 →
∑
ij

|ij〉12 |E1
ij〉K β |1L〉123 →

∑
ijk

|ijk〉123 |E1
ijk〉K

|ij〉〈kl|12TrE
(
|α|2(|E0

ij0〉〈E0
kl0|+ |E0

ij1〉〈E0
kl1|)

+ αβ∗(|E0
ij0〉〈E1

kl0|+ |E0
ij1〉〈E1

kl1|)
+ α∗β(|E1

ij0〉〈E0
kl0|+ |E1

ij1〉〈E0
kl1|)

+ |β|2(|E1
ij0〉〈E1

kl0|+ |E1
ij1〉〈E1

kl1|)
)

〈E0
ij0|E0

kl0〉+ 〈E0
ij1|E0

kl1〉 = 〈E1
ij0|E1

kl0〉+ 〈E1
ij1|E1

kl1〉
〈E0

ij0|E1
kl0〉 = −〈E0

ij1|E1
kl1〉
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Additional degrees of freedom

Operator Generalized

α |0L〉12 →
∑
ij

|ij〉12 |E0
ij〉K α |0L〉123 →

∑
ijk

|ijk〉123 |E0
ijk〉K

β |1L〉12 →
∑
ij

|ij〉12 |E1
ij〉K β |1L〉123 →

∑
ijk

|ijk〉123 |E1
ijk〉K

Operator privacy:

=⇒ 〈E0
ij |E0

kl〉 = 〈E1
ij |E1

kl〉,
〈E0

ij |E1
kl〉 = 0

Generalized operator privacy:

〈E0
ij0|E0

kl0〉+ 〈E0
ij1|E0

kl1〉 = 〈E1
ij0|E1

kl0〉+ 〈E1
ij1|E1

kl1〉
〈E0

ij0|E1
kl0〉 = −〈E0

ij1|E1
kl1〉
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Generalized complementary channel

σB

UΦ

Φ(σB)
|ϕ〉〈ϕ|A

UMA

|Θ〉〈Θ|M
Φ̃(σB)

|ζ〉〈ζ|K




By purifying the ancillary space, the duality between privacy and
error correction is recovered for private subsystem channels!

What about a generalized notion of error correction?
A subsystem B is generalized operator quantum error
correctable for E if there exists a channel R, a fixed state σA,
and a state τA such that

R ◦ E(σA ⊗ σB) = τA ⊗ σB , ∀ σB



Private quantum
subsystems and
error correction

Tomas Jochym-
O’Connor

Privacy & error
correction

Restrictions of
operator privacy

Generalization of
subsystem privacy

Extended duality

New notion of QEC?

A subsystem B is generalized operator quantum error
correctable (GenOQEC) for E if there exists a channel R, a fixed
state σA, and a state τA such that

R ◦ E(σA ⊗ σB) = τA ⊗ σB , ∀ σB

There is no added benefit to the generalized notion of operator
quantum error correction

Given a GenOQEC channel Φ for a subsystem B with a fixed
ancilla state σA =

∑
pi|ψi〉〈ψi| and output ancilla τA. Then,

the channel is OQEC for any |ψi〉〈ψi|4:

=⇒ B is OQEC for Φ

4TJ, Kribs, Laflamme, Plosker (2014)
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Summary

Private quantum channels provide a quantum analog to the
classical one-time pad

Random commuting unitary channels cannot yield operator
private subsystems

Encoding information into fixed subsystems provide additional
freedom

Duality between general private subsystems and error correction
only recovered when extending the Hilbert space beyond
standard complementarity
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Thank you for your attention!
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