Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privacy

Generalization of subsystem privacy

Extended duality

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo

> 15 December 2014 QEC 2014 - Zurich

Work in collaboration with David Kribs, Raymond Laflamme, and Sarah Plosker

Last time at QEC...

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privac

Generalization of subsystem privac

Extended duality

 Introduction
 Stinespring Dilation Theorem
 Private Quantum Codes
 Connection with QEC and Beyond
 Conclusion

 0
 00000
 0000000
 0000000
 00
 00

On Complementarity In QEC And Quantum Cryptography

David Kribs

Professor & Chair Department of Mathematics & Statistics University of Guelph

Associate Member Institute for Quantum Computing University of Waterloo

QEC II — USC — December 2011

Outline

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privacy

Generalization of subsystem privacy

Extended duality

- Review definitions of operator quantum privacy and error correction
- Complementary between privacy and error correction
- Restrictions of operator quantum privacy
- Generalized notion of subsystem privacy
- Recovering the duality with quantum error correction

Notation

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy

Extended duality

- Subsystems: $S = (A \otimes B) \oplus (A \otimes B)^{\perp}$
- Density matrices: Bounded linear operators with trace 1, $\sigma_A \in A, \ \sigma_B \in B, \ \rho \in A \otimes B$
- Quantum channel: Completely positive trace preserving map between linear operators, $\Phi : \mathcal{B}(A) \to \mathcal{B}(C)$
- Complementary channel: Given a quantum channel Φ , there always exists a unitary U_{Φ} and ancillary state $|\phi\rangle\langle\phi|_{K}$ such that $\Phi(\rho_{A}) = \operatorname{Tr}_{K}(U_{\Phi}(\rho_{A} \otimes |\phi\rangle\langle\phi|_{K})U_{\Phi}^{\dagger}), \forall \rho_{i}$. The complementary channel is then defined as:

$$\Phi^{\sharp}(\rho) = \mathsf{Tr}_{C} \left(U_{\Phi}(\rho \otimes |\phi\rangle \langle \phi|_{K}) U_{\Phi}^{\dagger} \right).$$

Operator QEC and privacy

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privac

Generalization of subsystem privacy

- $S = (A \otimes B) \oplus (A \otimes B)^{\perp}$
- A subsystem *B* is an **operator private subsystem** for Φ if there exists ρ_0 such that

$$\Phi(\sigma_A \otimes \sigma_B) = \rho_0, \ \forall \sigma_A, \ \sigma_B$$

 A subsystem B is operator quantum error correctable for ε if there exist τ_A(σ_A), R such that

$$\mathcal{R}\circ\mathcal{E}(\sigma_A\otimes\sigma_B)=\tau_A\otimes\sigma_B$$

Random Unitary channels

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy Extended duality What type of channels are required to privatize quantum information?

In classical communication, messages can be encrypted using a one-time pad.

The key property of the one-time pad is the uniform *randomization* of each of the bits of the message.

Random Unitary channels

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy Extended duality What type of channels are required to privatize quantum information?

In classical communication, messages can be encrypted using a one-time pad.

The key property of the one-time pad is the uniform *randomization* of each of the bits of the message.

The state of any given bit of encrypted data x_b is given by a classical probability distribution:

$$\Phi(x_b) = \frac{1}{2}x_b + \frac{1}{2}\overline{x_b}$$

Random Unitary channels

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy What type of channels are required to privatize quantum information?

In classical communication, messages can be encrypted using a one-time pad.

Random unitary channels provide the quantum analogue to the classical one-time pad,

$$\Phi(\rho) = \sum_{i} p_i U_i \rho U_i^{\dagger}$$

Operator duality

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy

Theorem (KKS08¹)

A subsystem B is an operator private subsystem for a channel Φ if and only if it is operator QEC for the complementary channel Φ^{\sharp} .

¹D. Kretschmann, D. W. Kribs, R. Spekkens, (2008)

Quest for small private channels

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy Inspiration from quantum error correction!

The dephasing channel is not private on a single qubit:

$$\Lambda_i(\rho) = \frac{1}{2}(\rho + Z_i \rho Z_i) \qquad \forall \rho \in S.$$

How about the same identical channel on multiple qubits?

$$\Lambda(\rho) = \Phi_2 \circ \Phi_1(\rho)$$

Quest for small private channels

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy Extended duality Inspiration from quantum error correction!

The dephasing channel is not private on a single qubit:

$$\Lambda_i(\rho) = \frac{1}{2}(\rho + Z_i \rho Z_i) \qquad \forall \rho \in S.$$

How about the same identical channel on multiple qubits?

$$\Lambda(\rho) = \Phi_2 \circ \Phi_1(\rho)$$

The resulting mapping yields:

 $\begin{pmatrix} \alpha_{00} & \alpha_{01} & \alpha_{02} & \alpha_{03} \\ \alpha_{10} & \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{20} & \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{30} & \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \xrightarrow{\Lambda} \begin{pmatrix} \alpha_{00} & 0 & 0 & 0 \\ 0 & \alpha_{11} & 0 & 0 \\ 0 & 0 & \alpha_{22} & 0 \\ 0 & 0 & 0 & \alpha_{33} \end{pmatrix}$

No-go result for private subspaces

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy

Extended duality

Theorem (JKLP13²)

Let $\Phi(\rho) = \sum_{i} p_i U_i \rho U_i^{\dagger}$ be a random unitary channel with mutually commuting Kraus operators. Then Φ has no private subspace.

No-go result for private subspaces

Theorem (JKLP13²)

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy Let $\Phi(\rho) = \sum_{i} p_i U_i \rho U_i^{\dagger}$ be a random unitary channel with mutually commuting Kraus operators. Then Φ has no private subspace.

A subsystem B is an operator private subsystem for Φ if there exists ρ₀ such that

$$\Phi(\sigma_A \otimes \sigma_B) = \rho_0, \ \forall \sigma_A, \ \sigma_B$$

²TJ, D. W. Kribs, R. Laflamme, S. Plosker (2013)

No-go result for private subspaces

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privacy

Generalization of subsystem privacy

Theorem (JKLP13²)

Let $\Phi(\rho) = \sum_{i} p_i U_i \rho U_i^{\dagger}$ be a random unitary channel with mutually commuting Kraus operators. Then Φ has no private subspace.

• A subsystem *B* is an operator private subsystem for Φ if there exists ρ_0 such that

 $\Phi(\sigma_A \otimes |\psi\rangle \langle \psi|) = \rho_0, \ \forall \sigma_A, \ |\psi\rangle \langle \psi|$

Therefore, the channel $\Lambda = \Lambda_2 \circ \Lambda_1$ cannot be operator quantum private

²TJ, D. W. Kribs, R. Laflamme, S. Plosker (2013)

However...

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privacy

Generalization of subsystem privacy

Extended duality

• Consider the following encoding of a quantum state:

$$\rho_L = \frac{1}{2}(I + \alpha XX + \beta YI + \gamma ZX).$$

 ρ_L is privatized by the channel $\Lambda = \Lambda_2 \circ \Lambda_1$. A contradiction?

It can be shown that the state space defined by the parameters α, β, γ is unitarily equivalent to I₂ ⊗ D₂, where D₂ is the space of 2-dimensional density matrices.

Where is the loophole?

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privacy

Generalization of subsystem privacy

Extended duality

 Λ privatizes the state space $I_2\otimes \mathcal{D}_2$, why is this not equivalent to operator privacy?

A subsystem B is an **operator private subsystem** for Φ if there exists ρ_0 such that

$$\Phi(\boldsymbol{\sigma_A}\otimes\boldsymbol{\sigma_B})=\rho_0, \ \forall \boldsymbol{\sigma_A}, \ \boldsymbol{\sigma_B}$$

Where is the loophole?

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privacy

Generalization of subsystem privacy

Extended duality

 Λ privatizes the state space $I_2\otimes \mathcal{D}_2,$ why is this not equivalent to operator privacy?

A subsystem B is an **operator private subsystem** for Φ if there exists ρ_0 such that

$$\Phi(\boldsymbol{\sigma_A}\otimes\boldsymbol{\sigma_B})=\rho_0,\;\forall\boldsymbol{\sigma_A},\;\boldsymbol{\sigma_B}$$

Therefore, fixing the state $\sigma_A = I_2$, is what allows the channel to be private, suggesting a new notion of privacy, **private quantum** channels.

The role of a fixed ancilla

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privac

Generalization of subsystem privacy

Extended duality

• A subsystem B is a **private quantum subsystem**³ for Φ if there is a $\rho_0 \in S$ and $\sigma_A \in A$ such that

$$\Phi(\sigma_A \otimes \sigma_B) = \rho_0, \ \forall \sigma_B \in B$$

■ The conjugate channel to the multi-qubit phase damping channel Λ = Λ₂ ∘ Λ₁ cannot be operator quantum error correctable. In fact, it is private for the same encoding space.

³S. D. Bartlett, T. Rudolph, R. W. Spekkens (2004)

What happens to the duality with error correction?

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & erro correction

Restrictions of operator privacy

Generalization of subsystem privac

Extended duality

The mixed state ancilla is the resource allowing for privacy of the channel.

What happens to the duality with error correction?

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & erro correction

Restrictions of operator privac

Generalization of subsystem privac

Extended duality

The mixed state ancilla is the resource allowing for privacy of the channel.

The generalized complementary channel $\tilde{\Lambda}$ must be quantum error correctable by the operator duality that exists on the extended Hilbert space.

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & error correction

Restrictions of operator privac

Generalization of subsystem privac

Extended duality

Operator

 α

 β

Generalized

$$\begin{split} &0_L\rangle_{12} \to \sum_{ij} |ij\rangle_{12} |E^0_{ij}\rangle_K \qquad \alpha \, |0_L\rangle_{123} \to \sum_{ijk} |ijk\rangle_{123} \, |E^0_{ijk}\rangle_K \\ &1_L\rangle_{12} \to \sum_{ij} |ij\rangle_{12} \, |E^1_{ij}\rangle_K \qquad \beta \, |1_L\rangle_{123} \to \sum_{ijk} |ijk\rangle_{123} \, |E^1_{ijk}\rangle_K \end{split}$$

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & erro correction

Restrictions of operator privat

Generalization o subsystem privad

Extended duality

$$\begin{array}{ll} & \mathsf{Operator} & \mathsf{Generalized} \\ & \alpha \left| 0_L \right\rangle_{12} \rightarrow \sum_{ij} \left| ij \right\rangle_{12} \left| E^0_{ij} \right\rangle_K & \alpha \left| 0_L \right\rangle_{123} \rightarrow \sum_{ijk} \left| ijk \right\rangle_{123} \left| E^0_{ijk} \right\rangle_K \\ & \beta \left| 1_L \right\rangle_{12} \rightarrow \sum_{ij} \left| ij \right\rangle_{12} \left| E^1_{ij} \right\rangle_K & \beta \left| 1_L \right\rangle_{123} \rightarrow \sum_{ijk} \left| ijk \right\rangle_{123} \left| E^1_{ijk} \right\rangle_K \\ & \left| ij \right\rangle \langle kl \right|_{12} \mathsf{Tr}_E \left(\left| \alpha \right|^2 \left| E^0_{ij} \right\rangle \langle E^0_{kl} \right| \\ & + \alpha \beta^* \left| E^0_{ij} \right\rangle \langle E^1_{kl} \right| \\ & + \alpha^* \beta \left| E^1_{ij} \right\rangle \langle E^0_{kl} \right| \\ & + \left| \beta \right|^2 \left| E^1_{ij} \right\rangle \langle E^1_{kl} \right| \\ & \Rightarrow \langle E^0_{ij} \left| E^0_{kl} \right\rangle = \langle E^1_{ij} \left| E^1_{kl} \right\rangle, \end{array}$$

 $\langle E^0_{ij} | E^1_{kl} \rangle = 0$

Private quantum subsystems and error correction

1

Tomas Jochym O'Connor

Privacy & erro correction

Restrictions of operator privat

Generalization or subsystem privat

Extended duality

$$\begin{split} \text{Operator} & \text{Generalized} \\ \alpha \left| 0_L \right\rangle_{12} \rightarrow \sum_{ij} \left| ij \right\rangle_{12} \left| E^0_{ij} \right\rangle_K & \alpha \left| 0_L \right\rangle_{123} \rightarrow \sum_{ijk} \left| ijk \right\rangle_{123} \left| E^0_{ijk} \right\rangle_K \\ \beta \left| 1_L \right\rangle_{12} \rightarrow \sum_{ij} \left| ij \right\rangle_{12} \left| E^1_{ij} \right\rangle_K & \beta \left| 1_L \right\rangle_{123} \rightarrow \sum_{ijk} \left| ijk \right\rangle_{123} \left| E^1_{ijk} \right\rangle_K \\ \left| ij \right\rangle \langle kl |_{12} \text{Tr}_E \left(\left| \alpha \right|^2 \left(\left| E^0_{ij0} \right\rangle \langle E^0_{kl0} \right| + \left| E^0_{ij1} \right\rangle \langle E^0_{kl1} \right| \right) \\ & + \alpha \beta^* \left(\left| E^0_{ij0} \right\rangle \langle E^1_{kl0} \right| + \left| E^0_{ij1} \right\rangle \langle E^1_{kl1} \right| \right) \\ & + \left| \beta \right|^2 \left(\left| E^1_{ij0} \right\rangle \langle E^1_{kl0} \right| + \left| E^1_{ij1} \right\rangle \langle E^1_{kl1} \right|) \end{split}$$

$$\begin{split} \langle E^0_{ij0} | E^0_{kl0} \rangle + \langle E^0_{ij1} | E^0_{kl1} \rangle &= \langle E^1_{ij0} | E^1_{kl0} \rangle + \langle E^1_{ij1} | E^1_{kl1} \rangle \\ \langle E^0_{ij0} | E^1_{kl0} \rangle &= - \langle E^0_{ij1} | E^1_{kl1} \rangle \end{split}$$

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & erro correction

Restrictions of operator privac

Generalization of subsystem privat

Extended duality

Operator

Generalized

$$\begin{split} \alpha \left| 0_L \right\rangle_{12} &\to \sum_{ij} \left| ij \right\rangle_{12} \left| E^0_{ij} \right\rangle_K \qquad \alpha \left| 0_L \right\rangle_{123} \to \sum_{ijk} \left| ijk \right\rangle_{123} \left| E^0_{ijk} \right\rangle_K \\ \beta \left| 1_L \right\rangle_{12} &\to \sum_{ij} \left| ij \right\rangle_{12} \left| E^1_{ij} \right\rangle_K \qquad \beta \left| 1_L \right\rangle_{123} \to \sum_{ijk} \left| ijk \right\rangle_{123} \left| E^1_{ijk} \right\rangle_K \end{split}$$

Operator privacy:

$$\implies \langle E_{ij}^{0} | E_{kl}^{0} \rangle = \langle E_{ij}^{1} | E_{kl}^{1} \rangle,$$
$$\langle E_{ij}^{0} | E_{kl}^{1} \rangle = 0$$

Generalized operator privacy:

$$\begin{split} \langle E^0_{ij0} | E^0_{kl0} \rangle + \langle E^0_{ij1} | E^0_{kl1} \rangle &= \langle E^1_{ij0} | E^1_{kl0} \rangle + \langle E^1_{ij1} | E^1_{kl1} \rangle \\ \langle E^0_{ij0} | E^1_{kl0} \rangle &= - \langle E^0_{ij1} | E^1_{kl1} \rangle \end{split}$$

Generalized complementary channel

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & erro correction

Restrictions of operator privac

Generalization of subsystem privac

Extended duality

- By purifying the ancillary space, the duality between privacy and error correction is recovered for private subsystem channels!
- What about a generalized notion of error correction?
 A subsystem B is generalized operator quantum error correctable for ε if there exists a channel R, a fixed state σ_A, and a state τ_A such that

$$\mathcal{R} \circ \mathcal{E}(\sigma_A \otimes \sigma_B) = \tau_A \otimes \sigma_B, \ \forall \ \sigma_B$$

New notion of QEC?

1

Private quantum subsystems and error correction

Extended duality

A subsystem B is generalized operator quantum error **correctable (GenOQEC)** for \mathcal{E} if there exists a channel \mathcal{R} , a fixed state σ_A , and a state τ_A such that

$$\mathcal{R} \circ \mathcal{E}(\sigma_A \otimes \sigma_B) = \tau_A \otimes \sigma_B, \ \forall \ \sigma_B$$

- There is no added benefit to the generalized notion of operator quantum error correction
- Given a GenOQEC channel Φ for a subsystem B with a fixed ancilla state $\sigma_A = \sum p_i |\psi_i\rangle \langle \psi_i|$ and output ancilla τ_A . Then, the channel is OQEC for any $|\psi_i\rangle\langle\psi_i|^4$:

$$\Longrightarrow B$$
 is OQEC for Φ

⁴TJ, Kribs, Laflamme, Plosker (2014)

Summary

Private quantum subsystems and error correction

Tomas Jochym-O'Connor

Privacy & erro correction

Restrictions of operator privac

Generalization of subsystem privacy

Extended duality

- Private quantum channels provide a quantum analog to the classical one-time pad
- Random commuting unitary channels cannot yield operator private subsystems
- Encoding information into fixed subsystems provide additional freedom
- Duality between general private subsystems and error correction only recovered when extending the Hilbert space beyond standard complementarity

Private quantum subsystems and error correction

Tomas Jochym O'Connor

Privacy & erro correction

Restrictions of operator privac

Generalization of subsystem privac

Extended duality

Thank you for your attention!

Fonds de recherche Nature et technologies Québec 🏘 🛊

*

Industry Industrie Canada Canada