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What do we mean by quantum computer?

Quantum computer properties (in theory)
1 General purpose - Not limited to a single class of problems.

Universal.
2 Accurate - The probability of an error on the output can be made

arbitrarily small.
3 Scalable - Resource requirements do not grow exponentially in the

size or target error probability of the computation.

The goal of fault-tolerant quantum computing is to achieve these
properties in an imperfect device.

Lucero Colombe Chang
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Quantum circuit formalism

Qubit Quantum bit, i.e., a two-state quantum system.

α|0〉+ β|1〉 where |α|2 + |β|2 = 1

Gate Discrete operator, typically unitary, e.g.
Smite-MeisterThe Pauli operators

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
Other single-qubit rotations

H =

[
1 1
1 −1

]
Z
(π
2

)
∼= S =

[
1 0
0 i

]
Z
(π
4

)
∼= T =

[
1 0

0 e
iπ
4

]
Multi-qubit unitary operators

CX =

[
I 0
0 X

]
CCX = TOFFOLI =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 X


Measurement

MZ = Measure in Z eigenbasis MX = Measure in X eigenbasis
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Quantum circuit diagrams

Circuit diagrams used in this talk

Measurement
MZ = = Z

MX = X

Single-qubit unitaries
U = U

Multi-qubit unitaries

U = U

More multi-qubit unitaries
CX =

•
(controlled-NOT)

CU =
•
U

CCX =
•
• (TOFFOLI)

Example quantum circuit identity

Z • Z •
|π/4〉 • SX

= |+〉 • X T
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Pauli and Clifford groups

Pauli product A tensor product of Pauli operators, e.g.,
X ⊗Y ⊗Z ⊗ I or XYZI or X1Y2Z3I4.

Pauli group The group of all Pauli products of a given length
augmented by {±1,±i}.

Clifford group The group of unitary gates that preserves
the Pauli group under conjugation.
Includes X , Y , Z , H, S , and CX .

Clifford gate A gate that can be decomposed into
unitary gates from the Clifford group
along with measurement and
preparation in the fiducial basis.

Stabilizer state A state constructible using only
probabilistic Clifford gates.
A.K.A. Clifford state.

Dam 0907.3189

2

FIG. 1: Magic States and the Octahedron: Some of the single-qubit
magic states:|H〉 type states are designated with black arrows,|T〉
type states with white arrows. The octahedron defined by|x|+ |y|+
|z| ≤ 1 depicts the single qubit states that can be created by stabilizer
operations. Reichardt [7] showed that distillation techniques work
right up to the edges of the octahedron (i.e. tight in the|H〉 direction).
Current distillation techniques are unable to distill states just outside
the faces of the octahedron (i.e. not tight in the|T〉 direction).

hull of Clifford operations in order to find gates’ robustness
to various types of noise. In particular they considered gates
that are diagonal in the computational basis. Plenio and Vir-
mani [10] subsequently extended this idea by analyzing cases
where noise was allowed to affect the stabilizer operationstoo.
Buhrman et al. [11] used a similar idea (that noise causes non-
Clifford gates to eventually become implementable via Clif-
ford gates only) to find the non-Clifford gate that is most re-
sistant to depolarizing noise—aπ/8 rotation about theZ axis
(or the same gate modulo some Clifford operation). Reichardt
[8] showed that this particular gate enabledUQC right up to
its threshold noise rate (about 45%), as well as considering
in detail the process of reducing multi-qubit states to single-
qubit states using postselected stabilizer operations. Our cur-
rent result here generalizes this tightness result to all possible
single-qubit gates.

Preliminaries and Notation. Let us parameterize an arbi-
trary single-qubit SU(2) gate as follows

U(θ,γ,δ) =
(

eıγ cos(θ) −eıδ sin(θ)
e−ıδ sin(θ) e−ıγ cos(θ)

)
(3)

The representation of this rotation in SO(3) is denoted by
R(θ,γ,δ). Implementing a rotationR while suffering depolar-
izing noise (with noise ratep), means that this noisy operation
is represented by the rescalingM = (1− p)R, a fact that we
will need later.

Often we will apply the unitaryU(θ,γ,δ) to one half of an
entangled Bell pair,|Φ〉= 1√

2
(|00〉+ |11〉), yielding

ρ = (I ⊗U)|Φ〉〈Φ|(I⊗U)† (4)

If we use the two-qubit Pauli operators as a basis for the
density matrixρ then we can find the 16 real coefficients

ci j = Tr(ρ(σi ⊗σ j)) so that

ρ =
1
4 ∑ci j(σi ⊗σ j) i, j ∈ {I,X ,Y,Z}. (5)

Since we have applied a local unitary to a maximally entan-
gled state, the coefficients(cIX ,cIY ,cIZ ,cXI ,cYI ,cZI) are al-
ways zero. Comparing the 9 coefficients{cXX ,cXY , . . . ,cZZ}
one can see that these are the same as the entries of the SO(3)
matrixR(θ,γ,δ). More precisely,

R(θ,γ,δ) =

( cXX −cY X cZX
cXY −cYY cZY
cXZ −cY Z cZZ

)
(6)

where theci j are obviously also functions of(θ,γ,δ).
If we represent the 24 single-qubit Clifford operations as

SO(3) matrices, then they are simply signed permutation ma-
trices with unit determinant (they are a matrix representation
of the elements of the chiral octahedral symmetry group or,
equivalently, the symmetry group S4). We label these opera-
tionsCi and so the convex hull of theCi (the so-called Clifford
polytope) is given by

P =

{
24

∑
i=1

piCi

∣∣∣∣∣ with pi ≥ 0 and
24

∑
i=1

pi = 1

}
. (7)

Geometrically, the Clifford polytope is a closed polyhedron
in R9 that has 24 vertices (each vertex representing one of
theCi). This polytope can also be defined by the bounding
inequalities of its 120 facets. The concise description of these
facets used by Buhrman et al. [11] is given by the set

F = {CiFC j|i, j ∈ {1, . . . ,24},F ∈ {A,AT ,B}} (8)

where

A =

( 1 0 0
1 0 0
1 0 0

)
and B =

( 0 1 0
1 0 −1
1 0 1

)
. (9)

At times we will have reason to refer to different subsets of
the set of facetsF so we use the obvious notation

F = FA ∪FAT ∪FB. (10)

It is useful to note that all the facets derived fromA comprise a
single column with±1 entries and zeros elsewhere, and simi-
larly for the row facets derived fromAT , hence|FA|= |FAT |=
3 · 23 = 24. There are|FB| = 72 “B-type” facets, which can
be constructed as follows: (i) Pick one position in the matrix
e.g.Mi, j and put±1 there (9× 2 = 18 choices), (ii) Fill the
remaining entries not in rowi or column j with ±1 such that
det(M) =−2 (4 choices).

To determine whether or not an operationM is inside the
Clifford polytopeP we take the elementwise inner product
(or Frobenius inner product) betweenM and the facetsF ∈ F
of the polytope

M ·F =
3

∑
i, j=1

Mi, jFi, j = Tr(MT F). (11)

Using the above notation, a 3×3 matrixM is inside the poly-
topeP if and only if for all F ∈ F we haveM ·F ≤ 1.
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Clifford gates are classically simulable

Gottesman-Knill Theorem Gottesman quant-ph/9705052

Any quantum computation composed exclusively of Clifford gates can be
efficiently simulated using a classical computer.

Sketch: The computer is always in the +1 eigenstate of a complete set of
commuting Pauli products, so the Clifford gates act simply in the
Heisenberg picture.

Clifford gates can generate arbitrary amounts of entanglement but are
computationally weak.

Additional quantum operations are needed to enable quantum speedups.
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Universality

Universal Capable of implementing any operation allowed by quantum
mechanics with arbitrarily high precision.

H, T , and CX make up a universal set of unitary gates

Any unitary operator can be decomposed into single-qubit unitaries
and CX gates.

H and T can be used to generate irrational rotations about two axes
of the bloch sphere.

Any single-qubit unitary can be approximated using these irrational
rotations (efficiently, see Solovay-Kitaev)

Augmenting the Clifford gates by any non-Clifford unitary gate allows for
efficient universal quantum computing.

The Toffoli and Fredkin gates and T, the π/4 Z rotation, are not Clifford
gates.
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Quantum error correction

Classical repetition code, R3:

000, 111

Quantum repetition code, R3:

α|000〉+ β|111〉
Quantum data cannot be directly inspected for error.

α|001〉+ β|110〉 MZ1−→ |001〉 or |110〉

Measure non-local check operators: Z1Z2 → 1, Z2Z3 → −1.

Syndrome Measurement outcomes for a set of check operators.

Syndrome decoding Inferring the location of the errors from the syndrome.

Errors are continuous.

(
√

1− δ2I + iδX1)|000〉 =
√

1− δ2|000〉+ iδ|100〉

Use linearity of quantum mechanics, correct a basis, e.g. X , Y , and Z .
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Stabilizer codes
Stabilizer Commuting group of Pauli products each of which square to

the identity, e.g., II , XX , −YY , and ZZ

Stabilizer state +1 eigenstate of some stabilizer or a mixture thereof

Stabilizer generator Set of Pauli products that generate a stabilizer under
multiplication, e.g., XX and ZZ

Stabilizer code Code whose check operators can be chosen to be a stabilizer
generator

If A stabilizes |Ψ〉, 〈Ψ|E †AE |Ψ〉 = −1 for any error E s.t. AE = −EA.

Four-qubit error-detecting code

stabilizer
generator

=

[
X ⊗ X ⊗ X ⊗ X
Z ⊗ Z ⊗ Z ⊗ Z

]
X̄1 = X ⊗ X ⊗ I ⊗ I

Z̄1 = Z ⊗ I ⊗ I ⊗ Z

X̄2 = X ⊗ I ⊗ I ⊗ X

Z̄2 = Z ⊗ Z ⊗ I ⊗ I

Minimum distance The minimum size (in number of qubits affected) of an
undetectable (nontrivial) error, denoted d .
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CSS (Calderbank-Shor-Steane) codes

CSS code Code where the stabilizer generators can be chosen as
either X -type or Z -type Pauli products

Symmetric CSS code CSS code which is symmetric under exchange of X and Z

CSS codes can be constructed from certain pairs of classical codes.

For symmetric CSS codes, qubit-wise application of X , Y , Z , H, CX , MX , and
MZ are encoded operations.

Seven-qubit Steane error-correcting code

X -type
stabilizer
generator

=




X I X I X I X
I XX I I XX
I I I XXXX


 X̄ = XXXXXXX

Z̄ = ZZZZZZZ

A code with minimum distance d can correct errors on any
⌊
(d−1)

2

⌋
qubits.

If errors E and F are indistinguishable, E †AiE = F †AiF for all stabilizers Ai

which implies EF † is an undetectable error.
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Additional types of quantum codes

Subsystem code Quantum code that encode more logical qubits than used

LDPC code Quantum code with low-weight stabilizer generators

Topological code Quantum code associated with a topology such that logical
operators correspond to non-trivial topological features and
stabilizer generators have local support

Kitaev’s surface code Dennis quant-ph/0110143 Fowler 0803.0272
5
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FIG. 8: (Color online). Smooth qubit comprised of two
smooth defects. ZL corresponds to any ring of Z operators
around either defect. XL corresponds to any chain of X op-
erators connecting the two defects.
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+ + + + + + + +
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+ + + + + + +
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XL

FIG. 9: (Color online). Initializing a smooth qubit in the |+L〉
state. After preparing a region of qubits each in the |+〉 state,
every X stabilizer on the boundary of the region and every
Z stabilizer outside the dashed regions is measured. Negative
eigenvalues are treated as errors and corrected.

and we will again treat negative stabilizers as syndrome
changes, match them and correct them with chains of X
operators. We will henceforth refer to a double smooth
defect logical qubit as simply a smooth qubit.
Rough qubits are also possible to create via Z measure-

ments as shown in Fig. 10. In this case the ZL operator
is any chain of Z operators linking the two defects, and
XL any ring of X operators around either defect. Rough
qubits are initialized to the +1 eigenstate of XL, |+L〉,
by default, although |0L〉 can be prepared starting with
a region of qubits in the |0〉 state.
Logical measurement is similar to initialization. To

measure a smooth qubit in the ZL basis, a region of
qubits encircling either or both defects is measured in the
Z basis. In the absence of errors every path encircling ei-
ther defect will have the same parity of Z measurements.
If errors are present, they can be detected and corrected
using the standard error correction procedure as directly
measuring qubits in the Z basis is also an acceptable

MZ

MZ

MZ

MZ

MZ

MZ

MZ

MZX

Z

X

X X

X

X

XX

Z

Z

Z

Z

FIG. 10: (Color online). Initializing a rough qubit in the |+L〉
state via Z basis measurements MZ and ignoring stabilizers
(shaded). XL is any ring of X operators around either defect.
ZL is any chain of Z operators linking the two defects.
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FIG. 11: Example of measurement of a smooth qubit in the
ZL basis in the absence of errors. Note that the measurements
around every face have even parity whereas the parity of any
path of measurements encircling either defect is odd. The
figure thus corresponds to the measurement result |1L〉.

way to gain information about the eigenvalues of the Z
stabilizers — even parity of Z measurements around a
face corresponding to a positive eigenvalue and odd par-
ity corresponding to a negative eigenvalue. Note that, as
shown in Fig. 11, it is possible for every face to have even
parity, meaning no errors, and every path around either
defect to have odd parity, meaning a readout result of
|1L〉.
A smooth qubit can be measured in the XL basis by

measuring a region including both defects in the X basis.
In this instance the parity of all chains of X measure-
ments connecting the two defects will be the same in the
absence of errors. Similarly, rough qubits can be easily
measured in either logical basis.

V. LOGICAL CNOT

So far, we have discussed two types of logical qubits,
smooth and rough, schemes to initialize and measure
them in the ZL and XL bases, and ZL and XL oper-
ations. The only two logical qubit gate in this scheme
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Encoded gates and fault tolerance

A unitary gate U is a valid encoded gate if U
∑

i SiU
† =

∑
i Si , e.g., for

any stabilizer Si , USiU
† is a stabilizer.

For unitary Clifford gates checking this and how the logical Pauli
operators transform is easy.

Bad method of applying an encoded gate

D
ec

o
d

e

U

E
n

co
d

e|0〉

|0〉

|0〉

|0〉

Code block A group of qubits that are error corrected as a unit
Fault tolerance A circuit is fault tolerant against t failures if failures in t

elements results in at most t errors per code block.

Generally, qubits in an encoded block should not interact.
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Transversal encoded gates

Code with four code blocks

Transversal gates are fault tolerant because each code block is corrected
independently.

Eastin-Knill Theorem Eastin 0811.4262 (See also Zeng 0706.1382.)

No code capable of detecting single-qubit errors has a universal,
transversal encoded unitary gate set.

Sketch: An infinitesimal, transversal logical unitary gate looks like a
superposition of single-qubit errors.
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Techniques for achieving fault tolerance

Transversal gates

• X

T † • X

• X

SX

Repetitive measurement

|+〉 Z

|+〉 Z

• •

Ancillary states

Z •
|π/4〉 • SX

|π/4〉 = 1√
2
(|0〉 + eiπ/4|1〉)

Discard

• • • •
|0〉 Z 0

|0〉 Z 0
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Measurement circuit

How do you perform coherent measurement of multiqubit observables?

Measuring M where M2 = 1

|+〉 • X

|ψ〉 M

Measuring X1Y2Z3

|+〉 • • • X

X

Y

Z

Algebra

CM12|+〉|ψ〉 = CM12
1√
2

(|0〉+ |1〉)|ψ〉 =
1√
2

(|0〉|ψ〉+ |1〉M2|ψ〉)

=
1

2
((|+〉+ |−〉)|ψ〉+ (|+〉 − |−〉)M2|ψ〉)

= |+〉 (I2 + M2)

2
|ψ〉+ |−〉 (I2 −M2)

2
|ψ〉

Frequently, measuring things in this way is not a good idea.
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Circuit identities for quantum error
correction

Error propagation is a valuable tool for understanding quantum error correction

Fault-tolerant error correction typically requires only Clifford gates

Errors can be expanded in terms of Pauli products (and Y = iZX )

Pauli products can be propagated through Clifford gates

Logical errors correspond to certain Pauli products

Circuit identities used in this talk

Z Z = Z X X = X

X •
=

• X

X

Z •
=

• Z

•
=

•
X X

•
=

• Z

Z Z

Bryan Eastin Fault-tolerant Quantum Computing



Approaches to fault-tolerant error correction

Shor Z -error correction (partial)
• X • X • X

∣∣+̃
〉 • X ∣∣+̃

〉 • X ∣∣+̃
〉 • X

• X • X • X
• X • X • X













Knill X - & Z - error correction

|0̄0̄〉+|1̄1̄〉√
2

• X
• X
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• X

• X
• X

• X

Z

Z

Z

Z

Z

Z

Z




Steane Z -error correction
• X
• X
• X

|0̄〉 • X
• X
• X
• X



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Shor-style error correction
Shor error correction Shor quant-ph/9605011

Simple measurement of check
operators

Requires cat states

Typically, FT procedures require
between t + 1 =

⌈
d
2

⌉
and d repetitions

Time per repetition scales like max
number of check operators per qubit

Non-FT X1X3X5X7 measurement

|+〉 • • • • X

|+〉 = (|0〉 + |1〉) /
√

2

Shor Z -error correction

• X • X • X
∣∣+̃
〉 • X ∣∣+̃

〉 • X ∣∣+̃
〉 • X

• X • X • X
• X • X • X













∣∣+̃〉 = (|0000〉 + |1111〉) /
√

2

Exception:
Surface code
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Steane-style error correction

Steane error correction Steane quant-ph/9708021

Trivial logical circuit

Requires encoded |0〉 and |+〉 states

Can be used with ancillae verified against
one or both kinds of error

For every X/Z correction

At least t + 1 repetitions are required for
partially verified ancillae
1 coupling is sufficient for fully verified
ancillae

Steane Z -error correction

• X

• X

• X

|0̄〉 • X

• X

• X

• X




Logical circuit for Steane Z EC

|0〉 • X

Logical circuit for Steane X EC

|+〉 Z

•
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Steane-style error correction

Steane error correction Steane quant-ph/9708021

Trivial logical circuit

Requires encoded |0〉 and |+〉 states

Can be used with ancillae verified against
one or both kinds of error

For every X/Z correction

At least t + 1 repetitions are required for
partially verified ancillae
1 coupling is sufficient for fully verified
ancillae

Steane Z -error correction

• X

• X

• Z X

|0̄〉 • X

• X

• X

• X

Z


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•
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Knill-style error correction

Knill error correction Knill quant-ph/0410199

Logical circuit is teleportation

Requires encoded (|00〉+ |11〉)/
√

2 states

One coupling for both X and Z error
correction

Physical errors cannot propagate through

Teleportation eliminates leakage

Knill X - & Z - error correction

|0̄0̄〉+|1̄1̄〉√
2

• X
• X

• X
• X

• X
• X

• X

Z

Z

Z

Z

Z

Z

Z




Logical circuit for Knill EC

|00〉+|11〉√
2 • X

Z
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Ancilla construction approaches

Make-and-measure

|+〉 • •
|0〉 •
|0〉 •
|0〉 •

|0〉 Z 0

Make-and-measure-later

|0〉 • • • X
|+〉 • • • • Z
|0〉 • • Z
|0〉 • Z

Measure-to-make

|+〉 •
|+〉 • • •
|+〉 • • •
|+〉 •
|0〉 Z

|0〉 Z
|0〉 Z

|0〉 Z
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Make-and-measure ancilla construction

Make-and-measure ancilla construction Shor quant-ph/9605011

O(n) time to construct an arbitrary Clifford state

Preparation can convert low- to high-weight errors

States must be verified against artificially high-weight errors

Error checks can take many forms

Generically, a hierarchy of ≈ log(d/2) transversal verification rounds (as
shown for d = 3) using ≈ d2/4 states adequately suppresses errors

Carefully chosen preparation circuits can decrease needed verification
Paetznick 1106.2190

Make-and-measure 4-cat

|+〉 • •
|0〉 •
|0〉 •
|0〉 •

|0〉 Z 0

Logical circuit for d=3 verification

|0〉 •
|0〉 Z

|0〉 • • X

|0〉 Z
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Measure-to-make ancilla construction

Measure-to-make ancilla construction Dennis quant-ph/0110143

Starts in a product state, e.g., |+〉⊗n

Uses Shor-style measurement of check operators to project into the
code space

Often used for surface codes

Measure-to-make

|+〉 •
|+〉 • • •
|+〉 • • •
|+〉 •
|0〉 Z

|0〉 Z
|0〉 Z

|0〉 Z
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Make-and-measure-later ancilla construction

Make-and-measure-later ancilla
construction DiVincenzo quant-ph/0607047

Ancillae checked for errors after use

Technique works for most
operations on the Steane code.

Circuits can be challenging to find
for larger codes

O(m) time to de/construct an
arbitrary m-qubit Clifford state

Good for slow measurements

Make-and-measure

2

for a fault-tolerant implementation of the “high-level”
location (i.e., logical state preparation, gate or measure-
ment), followed by those locations needed for a full error-
correction cycle. If the error rate for elementary opera-
tions is below the accuracy threshold, this replacement
will result in an encoded circuit whose effective noise rate
is lowered with respect to the original unencoded cir-
cuit. To lower the noise still further, the replacement
procedure can be repeated sufficiently many times for
the locations in the encoded circuit itself. Each time, a
new circuit is created which is encoded at an increasingly
higher level of a concatenated quantum code. Although
this standard concatenation procedure is not necessarily
the most efficient procedure for achieving fault tolerance,
we will use it for the present study as its performance
has been quantified both numerically and analytically in
a number of different settings.

The standard concatenation procedure described
above can be varied and optimized in various physical
settings. For example, Knill [5] has shown that, in a set-
ting where memory and qubit transport are essentially
noiseless, a very inefficient strategy for the generation
of ancilla states based on post-selection gives a thresh-
old around 3× 10−2 for depolarizing noise. On the other
hand, in the more realistic setting for contemplated solid-
state implementations, where memory has a noise level
in the same range as gate operations and qubit transport
must be accomplished by noisy swap gate operations,
a different strategy relying less on ancilla post-selection
seems to be the best. Such an approach has been ana-
lyzed by Aliferis, Gottesman, and Preskill (AGP) [8]—
they find noise thresholds in this setting to be somewhat
lower than 10−4 for stochastic noise. Svore, DiVincenzo,
and Terhal (SDT) [10] analyze a variant of this setting
with qubits constrained to lie on a fixed two-dimensional
square geometry. By modifying and adapting the ver-
ification circuits of AGP to this lattice geometry, the
penalty on the threshold found by SDT in this setting
is only about a factor of two compared with the com-
pletely unrestricted geometry of AGP.

In all of this work, measurement times and gate opera-
tion times have been assumed to be of the same order. In
fact, it would seem that the value of the accuracy thresh-
old depends crucially on this assumption: Most impor-
tantly, measurement is used in ancilla verification during
error correction and, the longer measurement takes, the
longer the ancilla qubits need to wait in memory while
verification is completed. The problem is illustrated by
Fig. 1, which shows a fragment of a circuit that extracts
information about errors in the data block according to
the scheme introduced by Shor [9, 11]. Roughly speak-
ing, if measurement takes 1,000 gate operation times, the
memory noise level would need to be 1,000 times below
the gate noise level for the fidelity of the waiting ancilla
to remain high enough and the accuracy threshold for
gate noise to stay unchanged when slow measurement is

taken in consideration. There are some physical systems
in which the noise for qubit storage (and movement) may
indeed be very low, so that measurement-based verifica-
tion can be used very effectively to obtain high accuracy
thresholds [5]. But in other settings (e.g., in solid-state
schemes) it is expected that noise levels for gate opera-
tions, memory, and moving will be comparable; it would
seem that the threshold for FTQC would then be severely
compromised by long measurement times.

data
block
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|0〉 �������� • •
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X

|+〉 • • •
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X
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X

|0〉 �������� • •
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X

|0〉 �������� ��������
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Z
+1

FIG. 1: Fragment of an error correction circuit in which a
“cat state” ancilla [9] is prepared, verified, coupled to the
data, and then measured. The first three controlled-NOT
(cnot) gates prepare a four-qubit “Schrödinger cat” [9] an-
cilla state. The next two cnots and the measurement of
Z ≡ σz comprise the verification of this ancilla. In this pro-
tocol, this measurement outcome must be known before the
verified ancilla is coupled to the data block: If the measure-
ment outcome is −1, the cat state is to be discarded and
ancilla preparation is to be attempted again.

However, in this paper we show the opposite: even in
these settings, the threshold is hardly affected by long
measurement times. This is so because, as we discuss
below (point 2.), one can replace the verification proto-
col above with a deterministic one that corrects errors in
the verified ancilla. And importantly, this replacement
results in an accuracy threshold comparable to that ob-
tained with non-deterministic verification. But the full
story involves a combination of existing and new ideas,
that we now explain:
1. Use of Pauli frames. We did not comment above

on the use of the measurements of X ≡ σx in Fig. 1.
These measurement bits are combined to yield the code
syndrome which indicates errors in the data block and
the necessary recovery operation to invert them. For all
codes used in FTQC, these recovery operations are ten-
sor products of single-qubit operations in the usual Pauli
group. It has been known for some time (e.g., see [5, 8])
that it is not necessary to directly apply these recovery
operations on the data. Instead, it is sufficient to merely
record and keep track of them in a classical memory as
a reference frame defined by a Pauli rotation. This is so
because the Pauli group is closed under the action of the
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Make-and-measure-later ancilla construction

Make-and-measure-later ancilla
construction DiVincenzo quant-ph/0607047

Ancillae checked for errors after use

Technique works for most
operations on the Steane code.

Circuits can be challenging to find
for larger codes

O(m) time to de/construct an
arbitrary m-qubit Clifford state

Good for slow measurements

Make-and-measure-later

3

Clifford group: Pauli operators commute through gates
belonging to the Clifford group to give other Pauli oper-
ators. Since gates in a fault-tolerant circuit that deter-
mine the accuracy threshold—most importantly, all gates
needed for implementing error correction—belong to the
Clifford group, the application of the recovery operations
specified by the syndrome can usually be delayed a long
time.
2. Ancilla decoding instead of verification. This is a

new idea, and requires a modification of all existing an-
cilla verification circuits. But the modification is always
simple—Fig. 2 shows the necessary change to the circuit
in Fig. 1. The reason that ancilla pre-verification before
interaction with the data has previously been considered
necessary is that a single fault, at certain locations in the
ancilla preparation circuit, can lead to a multi-qubit error
in the ancilla state. It has therefore always been thought
necessary to prevent such ancillae from interacting with
the data. But, if the nature of these multi-qubit errors
can always be determined by post-processing of the an-
cilla after its interaction with the data, then a suitable
recovery operation can always be devised. The decoding
and measurement of the ancilla in Fig. 2 serve to deter-
mine such a recovery operation for the data, and this
operation is again always a tensor product of single-qubit
Pauli operations. Therefore, as in our discussion above,
correction of multi-qubit errors in the ancilla can always
be delayed by incorporating the recovery operation into
the Pauli frame. The Supplementary Information gives
further details of this method.

data
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FIG. 2: The modified circuit from Fig. 1: ancilla verification
is removed, and is replaced by a decoding and measurement
of the ancilla.

The remaining ideas are needed only to deal with these
non-Clifford operations which, together with Clifford-
group operations, complete quantum universality. Non-
Clifford operations require a different treatment since a
Pauli frame cannot be simply propagated through them:
Commuting a Pauli operator through such a gate can
generally give an operator outside the Pauli group. For
this reason, all information determining the current Pauli
frame must be known before the application of a non-
Clifford gate, so that the restoration operation can be

applied immediately before the non-Clifford operation is
implemented.
We will now show that, despite this restriction, non-

Clifford gates can be executed effectively even when all
measurements are slow. First, we recall that logical non-
Clifford gates are fault-tolerantly simulated using appro-
priate ancilla states. Non-Clifford gate operations appear
in the sub-circuits preparing these ancillae, while the use
of the ancillae after preparation and verification involves
only Clifford-group operations [12]. This does not im-
mediately lead to a solution to the measurement-time
problem, as e.g. Fig. 3 illustrates. This figure shows how
to simulate the T ≡ exp(−iπ8σz) gate, with the Clifford-
group gate S = T 2 conditioned on the measurement out-
come. Alternatively, the logical Toffoli gate could be sim-
ulated, with cnot gates being conditioned on the mea-
surement outcomes inside the simulation circuit [4, 9].

|ψ〉 • S T |ψ〉

|aπ/8〉 ��������
FE






Z

FIG. 3: Simulation of the gate T using the ancilla |aπ/8〉 ≡
Tσx|0〉, Clifford-group operations and measurement. The
gate S is performed only if the measurement outcome is −1.

The simulation circuit of Fig. 3 is to be used in an
encoded form and the ancilla block will be prepared in
the logical |aπ/8〉 state. And, as the next step, this cir-
cuit will also be concatenated in order to decrease the
effective noise for the logical T gate to the desired level.
When the simulation of the logical T gate occurs at level
ℓ, the circuit in Fig. 3 uses a level-ℓ |aπ/8〉 ancilla. And
there is a fault-tolerant rectangle (see [8, 10] for the cir-
cuit) which prepares the level-ℓ ancilla using level-(ℓ−1)
T gates. In this standard approach, these alternating
replacements are iterated until Fig. 3 is used at level 1,
where it contains zeroth-level physical T gates.
However, this circuit is clearly unusable at level 1 if

measurements are slow: The data qubits will have to
wait in memory too long since the outcome of the mea-
surement of level-1 logical Z (including all the preced-
ing Pauli-frame information that determines its meaning)
must be known in order to decide if the level-1 logical S
gate is to performed (this decision must be made before
this qubit is involved in the next logical cnot in the cir-
cuit, which is usually immediately). Is there a fix to this
problem?
Here is the essential idea: In order to get a very low

effective error rate for the logical T gate, it is only nec-
essary that the circuit of Fig. 3 appears at sufficiently
many high levels of concatenation. But at high levels
of concatenation there is no problem with slow measure-

ment! This is so because the gate time t
(k)
gate at level k of

concatenation scales exponentially with k: t
(k)
gate = aCk

for some constants a and C. On the other hand, the

Bryan Eastin Fault-tolerant Quantum Computing



Computing forever

The encoded error rate cannot be made arbitrarily small with a finite code.

Approaches to increasing the error suppression of a code

Switching to a larger instance of the code family

Often d ∝ √
n or even n

Preparation of logical basis states can be challenging
Syndrome decoding can be challenging
Well suited to surface and other LDPC codes

Concatenation

Iterates the encoding map, so each level of encoding decreases the effective
error rate
Simple recursive ancilla preparation
Concatenated syndrome decoding gives dd/2el order suppression, dd l/2e
requires a multi-level decoder, e.g., message passing
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Achieving universality

Universality through teleportation

Z •
|π/4〉 • SX

|π/4〉 = 1√
2

(
|0〉+ expiπ/4 |1〉

)

Recipe for achieving universality:

1 Prepare a computationally useful logical state (using, e.g., state injection)

2 Purify it or otherwise check for error

3 Use it to apply a gate through teleportation

Dennis quant-ph/9905027

Knill quant-ph/0402171

Bravyi quant-ph/0403025

State injection

|+̄〉 • Z X

|0̄〉 D • X

|Ψ〉 Z
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Magic-state distillation

State distillation The conversion of multiple faulty copies of a
state into fewer copies of higher fidelity.

Magic state distillation The distillation of certain non-Clifford states
using perfect Clifford gates.

x y

z

|0〉

|1〉

|0〉+|1〉√
2

|0〉−|1〉√
2

|0〉+i|1〉√
2

|0〉−i|1〉√
2

|H〉

Figure 1: Bloch sphere: Up to a phase, single-qubit states are in correspondence with points on or in
the unit sphere in R3. The state ρ(x, y, z) = 1

2(I+xX+yY +zZ) corresponds to the point (x, y, z).
Pure states correspond to points on the surface of the sphere. All points ρ in the octahedron O the
convex hull of the six Pauli eigenstates can be prepared using stabilizer operations.

Theorem 3. U(ρ(x, y, z)) holds if

max{|x|+
√
y2 + z2, |y|+

√
x2 + z2, |z|+

√
x2 + y2} > 1 . (4)

The basic operation required is a simple parity check, which we introduce in Section 2. Applying
the parity check in the computational and dual bases, in Section 3, gives the stated improvement
in the distillable region of states.

Moreover, we show in Section 4 that the set of distillable states is strictly larger than the set
delimited by Eqs. (2) and (4):

Theorem 4. U(ρ(fx, fy, fz)) holds for x = y = 3
√
7−7

7(2−
√
2)
≈ 0.229, z = 14−3

√
14

7(2−
√
2)
≈ 0.677 and

f = 0.9895.

Notice that the values of (x, y, z) in Theorem 4 satisfy Eqs. (2) and (4) with equality, so
(fx, fy, fz) is a slight but strict improvement. The proof of Theorem 4 comes from a small
modification of Bravyi and Kitaev’s distillation scheme.

Figure 2 displays the new distillable state results.

1.2 Multi-qubit state distillation

In [Rei05], this author considered the question U(ρ)? for multi-qubit pure states. For every multi-
qubit pure state that is not a stabilizer state, there exists a sequence of stabilizer operations that
reduces the state down to a single-qubit pure state that is not a Pauli eigenstate. From Corollary 1,
this implies:

3

Reichardt quant-ph/0608085

Procedure for magic state distillation:

1 Input imperfect magic states and perfect basis
states

2 Measure some stabilizers of a code S

3 Correct to +1 eigenspace of measured operators

4 Measure the remaining stabilizers of S

5 On successful projection into S , decode the
resulting magic state

Twirling

T (ρA) =
∑

i

TiρAT
†
i where Ti |A〉 = |A〉

Bryan Eastin Fault-tolerant Quantum Computing



Magic-state distillation

Alternative procedure for magic state distillation:

1 Prepare a perfect Clifford state encoded in a code S

2 Fault-tolerantly implement a logical non-Clifford gate using non-Clifford
states

3 Measure the stabilizers of S

4 On successful projection into S , decode the resulting magic state

Toffoli state distillation

|+〉 • •

|+〉 • •

•∣∣∣0̃
〉

Z 0

Routines exist for multi-qubit states, multiple
outputs, and qudits Aliferis quant-ph/0703230

Meier 1204.4221 Campbell 1205.3104

Efficiency of magic-state distillation

ξ = log{order of errorsuppression } ({ # input
magic states} / { # output

magic states})
ξ ≥ 1 conjectured Bravyi 1209.2426

ξ → 1 in existing protocols Jones 1210.3388

Many techniques for avoiding distillation
Shor quant-ph/9605011 Knill quant-ph/9610011 Paetznick 1304.3709
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Thresholds for quantum computation

Encoding does not always help. Error correction with unreliable components can
make things worse.

QC threshold The physical error probability below which an arbitrary quantum
computation can be performed efficiently

Pseudothreshold The physical error rate such that{
Encoded

failure probability

}
<

{
Unencoded

failure probability

}

Necessarily, below threshold the logical
error probability can be made arbitrarily
small

Pseudothresholds are difficult to define rigorously

Error probability does not fully characterize the error model

Picking a starting logical state is tricky

“Good” physical qubits are better than “good” logical qubits

Worst-case good qubits

L0 L1 L2 L3 L4 L5
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Rigorous threshold bounds using the
AGP method

The AGP method rigorously defines recursion so that the ExRec pseudothreshold
bounds the threshold
Aliferis quant-ph/0504218

AGP answers to pseudothreshold issues

Issue: Error model freedom

Answer: Adversarial error model

Issue: Starting state

Answer: ExRecs

Issue: “Good” logical qubits are
less good

Answer: Define “good” using
ideal decoder

ExRec (Extended Rectangle)

Error
correction

• Error
correction

Error
correction

Error
correction

Highest rigorous threshold lower bounds: 1.3× 10−3

Paetznick 1106.2190

Aliferis 0809.5063
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Numerically estimating the threshold
Numerical estimates of the threshold are generally obtained using Monte-Carlo
routines

Pauli errors are generated probabilistically

Errors collected using error propagation

Failure declared if an ideal decoder would miscorrect the Pauli errors

Threshold approximated with pseudothreshold

Pseudothreshold crossover
Chapter 3. Channel Dependency of the Threshold 86

0.00025 0.0005 0.00075 0.001 0.00125 0.0015

0.0005

0.001

0.0015

0.002

0.0025

p

p̄

Figure 3.1: The encoded CX error probability p̄ versus the unencoded gate error
probability p. The unencoded error channel here is depolarizing, and the code and
fault-tolerant method used are those of Steane. For reference, a diagonal line demar-
cating the break-even point for encoding is drawn in red. The intersection of this
line with the blue curve fitting the data gives a depolarizing threshold estimate of
pDth = 0.001. Error bars fit within the dots.

gate of interest is estimated by counting the number of times the gate is applied

between each time it fails. Statistics are taken for this counting data, and the loop

exits when the variance in the average reaches the target value. The output of my

simulation for the case of Steane’s method and a depolarizing error channel is plotted

in Figure 3.1. As in all subsequent plots, only data for the encoded CX gate is shown

since its encoded error rate is roughly a factor of two greater than either of the other

two gates.

3.2 Symmetric Two-qubit Error Channel

In place of the depolarizing channel, I consider a symmetric two-qubit-gate error

channel, that is, an error model such that errors are generated exclusively through

the failure of two-qubit gates (which, in this chapter, means CX gates) where the

Disadvantages of Monte-Carlo
routines:

Require significant time
and computational power

Effectiveness decreases as
event rate goes down

Error model must be fixed
in advance

Highest threshold estimates: .5− 3% Knill quant-ph/0410199 Fowler 0803.0272
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Conclusion

There’s much much more...

Topics to explore on your own

Resource overhead for quantum computing

The effect of coherent, correlated, and leakage errors on quantum
error correction

The construction of quantum from classical codes

Subsystem, LDPC, and topological codes

Decoherence free subspaces/subsystems

Self-correction and quantum feedback

Upper bounds on the threshold

Gate decompositions

Quantum coding bounds

Randomized benchmarking and tomography
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