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What is homology?

A combination of topology and group theory
providing tools to characterise topological spaces.




The purpose of this talk
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How mathematicians use (co)homology

e Algebraic topology
eDifferential geometry
e Abstract algebra

o[ .g. Wiles’ proof of
—ermat’s Last Theorem




How mathematicians learn homology

F.J.Hilton & S Wylie

1 Analytic topology

A topological space is a set X in which certain subsets, called
open sets, are distinguished; the collection of open sets satisfies the
axioms:

(O 1) the union of any number of open sets is open;

(O 2) the intersection of any finite number of open sets is open;

(O 3) the whole space and the empty set are open.

To prescribe the open sets is to assign a topology to the set X. If
%, ¥ are two topologies on the set X, then % is finer than ¥ (¥ is
coarser than %) if every set of X which is open in the topology ¥” is
open in the topology #. A set of open sets of X forms a base (for the
open sets) if every open set of X is a union of sets of the base.

A closed subset of the topological space X is the complement of an
open set; thus a topology is assigned by prescribing the closed sets
and the closed sets must satisfy the axioms:

(C1) the union of any finite number of closed sets is closed;

(C2) the intersection of any number of closed sets is closed;

(C3) the whole space and the empty set are closed.

If X, is a subset of the topological space X, the induced topology
in X, is that in which the open sets are the intersections with X, of
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How we use homology in QEC




How we use homology in QEC

® [he simplest groups
eNo Infinities
eNo Infinitessimals

eQubit codes - particularly
simple!

[f Homology was taught at school....



Why we use homology in QEC

eHomology captures all features of Kitaev
surface codes.

eToric, planar, 3D, 4D codes: (almost)
identical definitions in homology terms.

eHomology = how these codes "work”

ePowerful basis for generalisation

eConvenient terminology - if you know it!



This lecture
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This lecture

An introduction to the key concepts and terminology of
homology.

lllustrated with concrete examples from the toric code.




The Toric code

eEncodes 2 qubits with distance L on an L x L toric lattice.
eStabilizer generators associated with each plaquette and vertex.

O OO OO

* A.Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2-30

Periodic boundaries
Like colours identified

Plaquette
generator

Vertex generator



What is homology?

A combination of topology and group theory
providing tools to characterise topological spaces.




Topology - Cellulation

oA division of a d-dimensional space into a tiling
of d-dimensional objects.

E.Q. the torus



Topology - Cellulation

oA division of a d-dimensional space into a tiling
of d-dimensional objects.




Topology - Cellulation

oA division of a d-dimensional space into a tiling
of d-dimensional objects.
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Topology - Cellulation

oA division of a d-dimensional space into a tiling
of d-dimensional objects.
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Cellulation in the Toric code

eToric code: Qubits associated with edges of a
cellulation of the torus
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Topology - Cellulation

e\\Vhere two n-dim. objects meet
an (n-1)-dim. object is defined.

e [erminology: n-cells.

2-cell (or plaguette)

0-cell (or vertex)

1-cell (or edge)



What is homology?

A combination of topology aQd group theory
A spaces.

providing tools to characterise topotogs




/- - the simplest group

The group of a single bit z € {0,1)
0—1 1 —0
®[he group: ZQ =zl
oFlements: O, 1 0+0=0
eGroup composition: addition modulo 2 0+1=1
1+1=0

An Abelian group.
Every element is self-inverse.






Chains

e Starting points:
oo cellulation of a topological surface (or space)

°a group:

L)



Chains

e Definition: n-chain
e An assignment of an element of the group (here Z2) to
every n-cell in the cellulation.

® Fxample: 2-chain




Chains

e Definition: n-chain
e An assignment of an element of the group (here Z2) to
every n-cell in the cellulation.

o Fxample: 1-chain




Chains

e Definition: n-chain
e An assignment of an element of the group (here Z2) to
every n-cell in the cellulation.

o Fxample: O-chain




Chains

e Definition: n-chain
e An assignment of an element of the group (here Z») to
every n-cell in the cellulation.

eLach set of n-chains forms a group.
e(Group composition:cell-wise (bitwise) addition mod 2.
e(Group generators: associated with each n-cell.




Chains

e Definition: n-chain
e An assignment of an element of the group (here Z») to
every n-cell in the cellulation.

each set of n-chains forms a vector space over Zo.
eVector addition: cell-wise (bitwise) addition mod 2.
eSpace basis vectors: associated with each n-cell.




Chains

e Useful alternative notation - shading (1's mark out a subset)
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Chains in the Toric code

e1-chains: Os and 1s assigned to edges
= 0s and 1s assigned to qubits.
e 1-chain represents errors, stabilizer, corrections tor tensors of
same-type Paull operators.

X(c) =

NB Chain group structure =
operator group structure




Chains

eWarning: “Chain” is a “false friend”
*Not (usually) 1-dimensional or string-like
eConfusingly, the 1-chain group does
contain string-like elements!




Boundary




Boundary

e|ntuitively, n-dim objects have an (n-1)-dim. boundary /
surface / edge.




Boundary

*|n /> homology, using our “shading” notation, the
boundary map is intuitive:

0

>

boundary
map

2-chain 1-chain



Boundary

*|n /> homology, using our “shading” notation, the

boundary map is intuitive:

1-chain

0

boundary

map

>

O-chain



Boundary

eFormally the boundary map Jis a group homomorphism
(= linear map) from n-chains to (n-1)-chains.

2-chain 1-chain O-chain

> >

group group group

Defined on generators (single cells) and extended to
arbitrary chains via:

d(a + b) = 0(a) + A(b)



Boundary

eExample - if we define a 2-cell’'s boundary map:

2-cell

d

Implies

d




Boundary

eTerminology: This structure of chain groups and
boundary maps is called a chain complex.

E.Q.

2-chain 1-chain O-chain
group group group

chain complex



Boundary group

e [he set of n-chains which are boundaries of (n+1)-
chains form a group - a subgroup of the n-chain group.

o\\Ve call this the n-boundary group Bn.



Boundary in the Toric code

e The subgroup of the stabilizer generated by the plaquette operators
IS In one-to-one correspondence with the 1-boundary group.

Plaguette operator: Z( o(p) )

Plaquette
generator

Defined by boundary of
the 2-cell (plaquette) p.

Generates the entire
boundary group!



Boundary in the Toric code

e The subgroup of the stabilizer generated by the plaquette operators
IS In one-to-one correspondence with the 1-boundary group.

Plaguette operator: Z( o(p) )

Defined by boundary of
the 2-cell (plaquette) p.

Generates the entire
boundary group!




Boundary in the Toric code

oZ-errors are detected by vertex operator measurements.
eCan represent a set of Z-errors by a 1-chain.
e [he syndrome (vertex outcomes) corresponds precisely to its boundary.

vertex syndrome

0 (Z-error 1-chain)







Cycles

e he null chain-0
eLvery chain group has an identity operator
e[ Nhis is the element with O at every cell




Cycles

eDefinition: A cycle is a chain whose boundary is the

lI-chain.
null-chain 9(a) = 0

1-cycle




Cycles

eDefinition: A cycle is a chain whose boundary is the
null-chain.

d(a) =0

2-cycle




Cycle group

eEach set of n-cycles forms a group.

e\\Ve call this the n-cycle group Cn.




Cycle group

e [his looks familiar.



Boundary group

e [he set of n-boundaries form a group.

+
|

o\\Ve call this the n-boundary group Bn.




The central observations of homology

e-very boundary is a cycle.
eBut not every cycle is a boundary.




Every boundary Is a cycle

e|n geometric homology, t
since a boundary, by def

NIS IS an observation,

INition, must be “closed”.

*|n abstract homology, this becomes a defining

feature of any boundary

P =

map o.

starting point

0 for abstract homology



Not every cycle Is a boundary

eConsider the following 1-chain on a torus:




Not every cycle Is a boundary

|t has null boundary (no ends), and hence is a
cycle.




Not every cycle Is a boundary

eBut If we try and use it to enclose a finite area...




Not every cycle Is a boundary

eBut If we try and use it to enclose a finite area...




Not every cycle Is a boundary

e \Wwe cover the whole torus....




Not every cycle Is a boundary

e which is a 2-chain with no boundary.




Cycles in the Toric code

eRecall that: vertex syndrome

0 (Z-error 1-chain)




Cycles in the Toric code

e[hus if c is a 1-cycle, the operator Z(c) commutes with all vertex
operators, and hence the entire stabllizer.
e [hus 1-cycles represent logical operators on the toric code.

E.Q.




Homological equivalence




Homological equivalence

eSome cycles are boundaries, some not.
® [Nhis IS one notion of equivalence.
eHomological equivalence is stronger (and more useful).

j:




Homological equivalence

eDefinition: Two chains ¢ and d are homologically
equivalent if c = d + e, where e is a boundary.

|
+

o/.e. homologically equivalent chains are equal up to the
addition of a boundary.



Homological equivalence

oA very natural notion of equivalence in homological terms
eOn the torus, 4 equivalence classes:

These classes form a group isomorphic to ZaxZ2 (2 bit group)



HomMology group

eDefinition: The n-th homology group is the quotient group
Cn

By,
the homological equivalence classes of n-cycles.

eHomology groups capture topological properties of a
surface.
e [hey are independent of the cellulation used.



HomMology group

o[ g. The first homology group counts “handles” in a
surface.




Homological equivalence in the Toric Code

eHomological equivalence = equivalence up to (addition of)
a boundary.

e [he 1-boundary group corresp. to
the Z-subgroup of the stabilizer.

eHomological equivalence of 1-chains
= equivalence under Z-stabilizer multiplication
= equivalence on code-space (for Z-only Pauli operators.)



Homology Groups in the Toric Code

¢1st homology group defines inequivalent logical Z operators

Z —

AVZ




Homology In the toric code

o\Ve have now covered the key concepts of Z2 homology.

“chains

“boundaries

“cycles

“homological equivalence
“homology groups

eEach plays an important role in the toric code.
eProperties of Z-stabilizers and Z-errors are fully described.




Homology In the toric code

How can we complete the picture and fully include X-errors”



Cohomology




Cohomology

eCohomology is to homology as bras are to kets.

(@l

co-n-chain :

) = (olY) € C

linear
functional

n-chain — (co-n-chain, n-chain) € Z-

This dual construction provides:

“+co-chains (c.f. “bras” to chains “kets”)
“co-boundaries (c.f. “dagger” of operators)
“Co-cycles

“CO-
“CO-

N10IMmao

N10IMmao

ogical equivalence
Ogy groups



Cohomology

*|n cellular homology, co-homology can be

represented on the dual lattice.




Cohomology

e[ 0. In 2D, 1-cochains are assignments of Z> to edges on the

dual lattice...




Cohomology

owith a “scalar product” with 1-chains defined:
<, > = number of crossings with 1-chain, modulo 2

o 0. here < co-7-chain, chain > = 1



Cohomology in the Toric code

* [he roles played by

“chains

“boundaries

“cycles

“*homological equivalence
“*homology groups

efor Z-stabilizers and Z-errors....



Cohomology in the Toric code

eare played by

“+Cco-chains

“Cco-boundaries

“+Cco-cycles

“co-homological equivalence
“Cco-homology groups

ofor X-stabilizers and X-errors....



Cohomology in the Toric code

oZ operators identitied with 1-chains.
e X operators identitied with 1-cochains

Operator commutation is
fully described by the
scalar product

between chain and cochain.

Stabilizer code commutation rules encoded homologically!



Homological codes



Homological codes

eEvery feature of the toric code can be described
homologically.

eHomology can be applied to a wide variety of
topological spaces.



Homological codes

eSurface code on generalised torii




Homological codes

eToric code on a non-square cellulation




Homological codes

ePlanar code with boundaries

AN

X, X, X, X,

« S.B. Bravyi, A.Y. Kitaev, Quantum Codes on a Lattice with Boundary, Quantum Computers and Computing, 2001, 2 (1), pp. 43-48.
 M.H. Freedman, D.A. Meyer, Projective Plane and Planar Quantum Codes, Foundations of Computational Mathematics, July 2001,
Volume 1, Issue 3, pp 325-332



Homological codes

¢4-D toric code

* E. Dennis, A.Y. Kitaev, A. Landahl and J. Preskill, Topological quantum memory, J. Math. Phys. 43, 4452 (2002)



Homological codes

oZ4 homology - qudit topological codes




summary

Cellular homology makes Kitaev's surface code
simple to describe and infinitely generalisable.

The surface code provides a simple illustration
of the key ideas of homology and cohomology.




Thank you
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Further reading:
Lecture notes on Topological Codes and Homology,
Dan Browne, http:/bit.do/topo1 (draft version - please give feedback!)



http://bit.do/topo1

