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What is homology?

•A combination of topology and group theory  
providing tools to characterise topological spaces.



The purpose of this talk

The QEC Community

Familiarity  
with  

Homology0 100%



How mathematicians use (co)homology

•Algebraic topology 

•Differential geometry 

•Abstract algebra 

•E.g. Wiles’ proof of 
Fermat’s Last Theorem

Lego Sagrada de Familia



How mathematicians learn homology

Page 1 of Hilton and Wylie…



How mathematicians use (co)homology



How we use homology in QEC



How we use homology in QEC

•The simplest groups 

•No infinities 

•No infinitessimals 

•Qubit codes - particularly 
simple!

If Homology was taught at school….



Why we use homology in QEC

•Homology captures all features of Kitaev 
surface codes. 

•Toric, planar, 3D, 4D codes: (almost) 
identical definitions in homology terms. 

•Homology = how these codes “work” 

•Powerful basis for generalisation 

•Convenient terminology - if you know it!



This lecture
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This lecture

An introduction to the key concepts and terminology of 
homology. 

Illustrated with concrete examples from the toric code.



The Toric code
•Encodes 2 qubits with distance L on an L x L toric lattice. 
•Stabilizer generators associated with each plaquette and vertex.

Z
Z Z

Z

X
X X

X

Plaquette  
generator

Vertex generator

Periodic boundaries  
Like colours identified

• A.Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2-30 



What is homology?

•A combination of topology and group theory  
providing tools to characterise topological spaces.



Topology - Cellulation

•A division of a d-dimensional space into a tiling  
of d-dimensional objects.

E.g. the torus



Topology - Cellulation

•A division of a d-dimensional space into a tiling  
of d-dimensional objects.



Topology - Cellulation

•A division of a d-dimensional space into a tiling  
of d-dimensional objects.



Topology - Cellulation

•A division of a d-dimensional space into a tiling  
of d-dimensional objects.



Cellulation in the Toric code

•Toric code: Qubits associated with edges of a 
cellulation of the torus



Topology - Cellulation

•Where two n-dim. objects meet 
an (n-1)-dim. object is defined. 

•Terminology: n-cells.

2-cell (or plaquette)

0-cell (or vertex)

1-cell (or edge)



What is homology?

•A combination of topology and group theory  
providing tools to characterise topological spaces.



Z2 - the simplest group

The group of a single bit

•The group: 

•Elements: 0, 1 
•Group composition: addition modulo 2

An Abelian group. 
Every element is self-inverse. 

x 2 {0, 1}

x ! x� 1

0 ! 1 1 ! 0

Z2

0 + 0 = 0

0 + 1 = 1

1 + 1 = 0



Chains



Chains
•Starting points:  

•a cellulation of a topological surface (or space) 
 
 
 
 
 
 
 

•a group: 
Z2



Chains
•Definition: n-chain 
•An assignment of an element of the group (here Z2) to 
every n-cell in the cellulation.
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•Example: 2-chain 

 



Chains
•Definition: n-chain 
•An assignment of an element of the group (here Z2) to 
every n-cell in the cellulation.

 

•Example: 1-chain 
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Chains
•Definition: n-chain 
•An assignment of an element of the group (here Z2) to 
every n-cell in the cellulation.

 

•Example: 0-chain 
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Chains
•Definition: n-chain 
•An assignment of an element of the group (here Z2) to 
every n-cell in the cellulation. 

•Each set of n-chains forms a group.
•Group composition:cell-wise (bitwise) addition mod 2.
•Group generators: associated with each n-cell. 

 00 0

00 1

0 0 0

00 1

00 1

0 1 0

00 1

00 0

0 1 0

+ =



Chains
•Definition: n-chain 
•An assignment of an element of the group (here Z2) to 
every n-cell in the cellulation. 

•Each set of n-chains forms a vector space over Z2.
•Vector addition: cell-wise (bitwise) addition mod 2.
•Space basis vectors: associated with each n-cell. 

 00 0

00 1

0 0 0

00 1

00 1

0 1 0

00 1

00 0

0 1 0

+ =



Chains
•Useful alternative notation - shading (1’s mark out a subset) 

 

= 0

= 1

00 1

00 1

0 0 1

=



Chains in the Toric code
•1-chains: 0s and 1s assigned to edges 
                = 0s and 1s assigned to qubits. 

•1-chain represents errors, stabilizer, corrections for tensors of 
same-type Pauli operators. 

 

E.g. c =  
01 0

00 1

1 1 1

01 1

01 1

1 1 1

Z(c) = 

X(c) = 

NB Chain group structure = 
operator group structure 

Z

X

Z
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Z Z
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Z Z
Z Z Z
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X X

X X
X XX
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Chains
•Warning: “Chain” is a “false friend” 
•Not (usually) 1-dimensional or string-like
•Confusingly, the 1-chain group does  
contain string-like elements!



Boundary



Boundary
•Intuitively, n-dim objects have an (n-1)-dim. boundary / 
surface / edge.

 



Boundary
•In Z2 homology, using our “shading” notation, the 
boundary map is intuitive:

 

∂( =)∂( =)

2-chain 1-chain

boundary 
map

∂



Boundary
•In Z2 homology, using our “shading” notation, the 
boundary map is intuitive:

 

1-chain 0-chain

boundary 
map

∂
∂( =)∂( =)



Boundary
•Formally the boundary map ∂ is a group homomorphism 
(= linear map) from n-chains to (n-1)-chains. 

Defined on generators (single cells) and extended to 
arbitrary chains via: 

2-chain  
group

1-chain  
group

0-chain  
group

∂ ∂

@(a+ b) = @(a) + @(b)



Boundary
•Example - if we define a 2-cell’s boundary map: 

 

∂( =)
2-cell 

@(a+ b) = @(a) + @(b)

∂( =)
implies 



Boundary
•Terminology: This structure of chain groups and 
boundary maps is called a chain complex. 

E.g. 

 

2-chain  
group

1-chain  
group

0-chain  
group

∂ ∂

chain complex



Boundary group
•The set of n-chains which are boundaries of (n+1)-
chains form a group - a subgroup of the n-chain group. 

•We call this the n-boundary group Bn. 

 

+ =



Boundary in the Toric code
•The subgroup of the stabilizer generated by the plaquette operators 
is in one-to-one correspondence with the 1-boundary group. 

 

Z
Z Z

Z
Plaquette  
generator

Plaquette operator: Z( ∂(p) )

Defined by boundary of  
the 2-cell (plaquette) p. 

Generates the entire  
boundary group! 



Boundary in the Toric code
•The subgroup of the stabilizer generated by the plaquette operators 
is in one-to-one correspondence with the 1-boundary group. 

 

Plaquette operator: Z( ∂(p) )

Defined by boundary of  
the 2-cell (plaquette) p. 

Generates the entire  
boundary group! 

Z
Z

Z
Z Z

Z
Z

Z



Boundary in the Toric code
•Z-errors are detected by vertex operator measurements. 
•Can represent a set of Z-errors by a 1-chain. 
•The syndrome (vertex outcomes) corresponds precisely to its boundary. 

 

Z

Z

Z
Z

Z
vertex syndrome 

=  
∂ (Z-error 1-chain)



Cycles



Cycles
•The null chain - 0
•Every chain group has an identity operator 
•This is the element with 0 at every cell 
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Cycles

•Definition: A cycle is a chain whose boundary is the  
null-chain. 

1-cycle 

 

@(a) = 0



Cycles

•Definition: A cycle is a chain whose boundary is the  
null-chain. 

2-cycle 

 

@(a) = 0



Cycle group

•Each set of n-cycles forms a group. 

•We call this the n-cycle group Cn. 

+ =



Cycle group

•This looks familiar. 



Boundary group

•The set of n-boundaries form a group.

•We call this the n-boundary group Bn. 

+ =



The central observations of homology

•Every boundary is a cycle. 
•But not every cycle is a boundary. 
 



Every boundary is a cycle

•In geometric homology, this is an observation, 
since a boundary, by definition, must be “closed”. 

•In abstract homology, this becomes a defining 
feature of any boundary map ∂. 

 

+ =

@2 = 0
starting point 

for abstract homology



Not every cycle is a boundary
•Consider the following 1-chain on a torus:

 



Not every cycle is a boundary
•It has null boundary (no ends), and hence is a 
cycle.

 



Not every cycle is a boundary

•But if we try and use it to enclose a finite area…

 



Not every cycle is a boundary

•But if we try and use it to enclose a finite area…

 



Not every cycle is a boundary
•..we cover the whole torus….

 



Not every cycle is a boundary
•..which is a 2-chain with no boundary. 

 



Cycles in the Toric code
•Recall that: 

 

Z

Z

Z
Z

Z

vertex syndrome 
=  

∂ (Z-error 1-chain)



Cycles in the Toric code
•Thus if c is a 1-cycle, the operator Z(c) commutes with all vertex 
operators, and hence the entire stabilizer. 

•Thus 1-cycles represent logical operators on the toric code. 

 

E.g. Z

Z

Z

Z

Z

Z



Homological equivalence



Homological equivalence

•Some cycles are boundaries, some not. 
•This is one notion of equivalence. 
•Homological equivalence is stronger (and more useful). 



Homological equivalence

•Definition: Two chains c and d are homologically 
equivalent if c = d + e, where e is a boundary.

+=

•I.e. homologically equivalent chains are equal up to the 
addition of a boundary.



Homological equivalence
•A very natural notion of equivalence in homological terms 
•On the torus, 4 equivalence classes: 

These classes form a group isomorphic to Z2xZ2 (2 bit group)



Homology group

•Definition: The n-th homology group is the quotient group 

the homological equivalence classes of n-cycles. 

•Homology groups capture topological properties of a 
surface.  

•They are independent of the cellulation used. 

Cn

Bn



Homology group
•E.g. The first homology group counts “handles” in a 
surface.

Z2 ⇥ Z2 (Z2 ⇥ Z2)
2 (Z2 ⇥ Z2)

3



Homological equivalence in the Toric Code

•Homological equivalence = equivalence up to (addition of) 
a boundary. 

•The 1-boundary group corresp. to 
the Z-subgroup of the stabilizer. 
 
 

•Homological equivalence of 1-chains  
= equivalence under Z-stabilizer multiplication 
= equivalence on code-space (for Z-only Pauli operators.) 

Z
Z

Z
Z Z

Z
Z

Z



Homology Groups in the Toric Code
•1st homology group defines inequivalent logical Z operators 

Z1 Z2

Z1Z2



Homology in the toric code

•We have now covered the key concepts of Z2 homology.  

✤chains 
✤boundaries 
✤cycles  
✤homological equivalence 
✤homology groups 

•Each plays an important role in the toric code. 
•Properties of Z-stabilizers and Z-errors are fully described.



Homology in the toric code

How can we complete the picture and fully include X-errors?



Cohomology



Cohomology
•Cohomology is to homology as bras are to kets. 

 

 
This dual construction provides: 

✤co-chains (c.f. “bras” to chains “kets”) 
✤co-boundaries (c.f. “dagger” of operators) 
✤co-cycles  
✤co-homological equivalence 
✤co-homology groups 

h�|
linear  

functional

: | i ! h�| i 2

co-n-chain : n-chain ! hco-n-chain, n-chaini 2 2



Cohomology
•In cellular homology, co-homology can be  
represented on the dual lattice. 

 



Cohomology
•E.g. in 2D, 1-cochains are assignments of Z2 to edges on the  
dual lattice…

 



Cohomology
•with a “scalar product” with 1-chains defined: 
< , > = number of crossings with 1-chain, modulo 2 

 

•E.g. here  < co-1-chain, chain > = 1 



Cohomology in the Toric code

•The roles played by 

✤chains 
✤boundaries 
✤cycles  
✤homological equivalence 
✤homology groups 

•for Z-stabilizers and Z-errors….



Cohomology in the Toric code

•are played by 

✤co-chains 
✤co-boundaries 
✤co-cycles  
✤co-homological equivalence 
✤co-homology groups 

•for X-stabilizers and X-errors….



Cohomology in the Toric code

•Z operators identified with 1-chains. 
•X operators identified with 1-cochains 
 
Operator commutation is  
fully described by the  
scalar product  
between chain and cochain.

Z[a]X[b] = (�1)hb,aiX[b]Z[a]

Stabilizer code commutation rules encoded homologically!



Homological codes



Homological codes

•Every feature of the toric code can be described 
homologically. 

•Homology can be applied to a wide variety of  
topological spaces. 



Homological codes

•Surface code on generalised torii



Homological codes

•Toric code on a non-square cellulation



Homological codes

•Planar code with boundaries

Z4Z3Z2Z1

X4X3X2X1

• S.B. Bravyi, A.Y. Kitaev, Quantum Codes on a Lattice with Boundary, Quantum Computers and Computing, 2001, 2 (1), pp. 43-48. 
• M.H. Freedman, D.A. Meyer, Projective Plane and Planar Quantum Codes, Foundations of Computational Mathematics, July 2001, 

Volume 1, Issue 3, pp 325-332



Homological codes

•4-D toric code

• E. Dennis, A.Y. Kitaev, A. Landahl and J. Preskill, Topological quantum memory, J. Math. Phys. 43, 4452 (2002)



Homological codes

•Zd homology - qudit topological codes



Cellular homology makes Kitaev’s surface code 
simple to describe and infinitely generalisable. 

The surface code provides a simple illustration 
of the key ideas of homology and cohomology. 

Summary



Thank you
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Further reading: 
Lecture notes on Topological Codes and Homology,  
Dan Browne, http://bit.do/topo1 (draft version - please give feedback!)

http://bit.do/topo1

