The advantages of qudit fault-tolerance

Background image: Computation Cloud installation piece Libby Heany

Earl T. Campbell (Sheffield) **Quantum Error Correction 2014 Zurich**

http://earltcampbell.com/research/

WHY QUDITS?

B Monz et al. *Phys. Rev. Lett.* **106** 130506 (2011)

Smith et al.

- Phys. Rev. Lett. 111, 170502 (2013)
- Anderson et al.
- arXiv:1410.3891 (2014)

OVERVIEW

A contemporary approach to fault-tolerant quantum computing

STORAGE	MAGIC STATES	COMPILING	ALGORITHMS	PROFIT
Use QEC code to reduce noise.	Prepare magic states and inject extra gates.	Compose finite gate set to produce any gate.	Implement quantum computation,	EE\$

Earl Campbell

ROUTES TO UNIVERSALITY

fault-tolerant ~ transversal $M_L \sim M \otimes M \otimes M \dots$

Magic States CODE 2 Allows fault-tolerant implementation of a non-Clifford gate, e.g. pi/8 gate e.g. Reed-Muller codes

ROUTES TO UNIVERSALITY

SUBSYSTEM CODES + GAUGE FIXING

Only 1 code. Potentially fewer resources needed. But must *also* allow fault-tolerant non-Clifford gate.

Many other alternative, but all rely on these exotic codes

E A. Paetznick and B. W. Reichardt, *Phys. Rev. Lett.* **111**, 090505 (2013). H. Bombin et. al., New J. Phys. **15**, 055023 (2013) J. T. Anderson et. al., Phys. Rev. Lett. **113**, 080501 (2014). T. Jochym-O'Connor and R. Laflamme, *Phys. Rev. Lett.* **112**, 010505 (2014).

Earl Campbell

e.g. gauge colour codes, or gauge variants of Reed-Muller codes

OVERVIEW

Qudit Toric Code

New J. Phys. **16** 063038 (2014)

Benjamin Brown Earl Campbell

INTRODUCING QUDITS

Define a basis $\{0, 1, \ldots, p-1\}$ with all arithmetic modulo p. Imagine states as notches on a clock face.

Clifford group C is normaliser of \mathcal{P} so $C\mathcal{P}C^{\dagger} = \mathcal{P}$

Overcomplete set of generators

$$\begin{array}{lcl} \mathcal{X}_{\alpha,\beta}|n\rangle &=& |\alpha n + \beta\rangle & H|n\rangle &=& \frac{1}{\sqrt{p}}\sum_{m}\omega^{nm}|m\rangle \\ \mathcal{Z}_{\alpha,\beta}|n\rangle &=& \omega^{\alpha n + \beta n^{2}}|n\rangle & C_{X}|n\rangle|m\rangle &=& |n\rangle|m+n\rangle \end{array}$$

Assuming **p** is an odd prime!

Earl Campbell

Pauli-group \mathcal{P} : generators $X|n
angle \ = \ |n+1
angle$ $Z|n
angle \ = \ \omega^n|n
angle$ where $\omega = e^{i2\pi/p}$

QUDIT TORIC CODES

The toric code straightforwardly generalizes

though we have to adjust the code slightly

7 Z^{\dagger}

plaquettes

Earl Campbell

Stabilizers

are still 4-body terms but "daggerized"

QUDIT TORIC CODES

The toric code straightforwardly generalizes

though we have to adjust the code slightly

Earl Campbell

Logical operators

are still closed loops (in the homological sense)

QUDIT TORIC CODES

The toric code straightforwardly generalizes

though we have to adjust the code slightly

Earl Campbell

Logical operators

are still closed loops (in the homological sense)

the shortest loop is length in a code of $2L^2$ qudits.

They are $[[2L^2,2,L]]$ codes.

DECODERS

S.Bravyi, J, Haah Phys. Rev. Lett. 111, 200501

RENORMALISATION

G. Duclos-Cianci, D. Poulin., Phys. Rev. Lett. **104**, 050504

RESULTS

Decoding and Thresholds

- We need to tweak broom to get this.
- Similar results in:

- \bigcirc measurement. Thresholds up to 8%

Earl Campbell

Magic States Pt. 1 Implementing non-Clifford gates

NON-CLIFFORD GATES

IN. Howard, J. Vala., *Phys. Rev. A* **86**, 022316 (2012) E. Campbell, H. Anwar, D. Browne., *Phys. Rev. X* **2** 041021 (2012)

Earl Campbell

Good examples of non-Clifford gates

Qutrit (p=3)

$$\rangle = \tau^n |n\rangle \\ \tau = \exp\left[i\frac{2\pi}{3^2}\right]$$

Qudits (p>3)

$$M|n\rangle = \omega^{n^3}|n\rangle$$

with $\omega = \exp\left[i\frac{2\pi}{p}\right]$

NON-CLIFFORD GATES

Qubit $$\begin{split} U|n\rangle &= \nu^n |n\rangle \\ \text{with } \nu &= \exp\left[i\frac{2\pi}{2^3}\right] \end{split}$$ $V|n\rangle$ with

Clifford hierarchy 3rd level Conjugates Pauli group to Clifford group

M

Earl Campbell

Good examples of non-Clifford gates

Qu*tri*t (p=3)

$$\rangle = \tau^n |n\rangle \\ \tau = \exp\left[i\frac{2\pi}{3^2}\right]$$

Qudits (p>3) are CUBIC gates

$$M|n\rangle = \omega^{n^3}|n\rangle$$

with $\omega = \exp\left[i\frac{2\pi}{p}\right]$

$$\mathcal{P}M^{\dagger} = \mathcal{C}$$

MAGIC STATE DISTILLATION

S. Brayvi and A. Kitaev., *Phys. Rev. A* **71**, 022316 (2005)
 E. Campbell, H. Anwar, D. Brown., *Phys. Rev. X* **2** 041021 (2012)

Earl Campbell

Given an [[n,k,d]] code with transversal M

for noise rate $\,\epsilon=1-\langle M|\rho|M\rangle\,$ we find

- O A threshold: if $\epsilon < \epsilon^*$ then $\epsilon_{out} < \epsilon$ O Exponential: $\epsilon_{out} < C\epsilon^d$
- \circ Overhead: $N \leq A_{\epsilon} \log^{\gamma}(\epsilon_{\text{target}})$

where we use **N** raw copies, and

$$\gamma = \log(n/k) / \log(d)$$

TRIORTHGONALITY

Define a matrix
$$G = \begin{pmatrix} G_0 \\ G_1 \end{pmatrix} \overset{\uparrow}{\underset{n}{\int}} \overset{\downarrow}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\overset{n}{\underset{n}{\int}} \overset{\iota}{\underset{n}{\overset{\iota}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\overset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\overset{\iota}{\underset{n}{\overset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\overset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\overset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\underset{n}{\overset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\underset{n}{\atop}} \overset{\iota}{\underset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\underset{n}{\atop}}} \overset{\iota}{\underset{n}{\atop}} \overset{\iota}{\underset{n$$

whenever

$$v = v' = v''$$
 $\sum_{j} v_j^3 = \begin{cases} 0 \pmod{p} & v \\ a \neq 0 \pmod{p} & v \end{cases}$

A triorthgonal code has a transversal non-Clifford U, V or M (upto a Clifford)

qubits 🗐 S. Brayvi and J. Haah., Phys. Rev. A 86, 052329 (2012) qudits I unpublished / in preparation

Earl Campbell

logical operators $X[\vec{v}]$ for all $\vec{v} \in G_1$

Definition

A matrix/code is said to be <u>triorthgonal</u> if for all $v, v', v'' \in G$

 $\in G_0$ otherwise, $\sum_{j} v_j v'_j v''_j = 0 \pmod{p}$ $\in G_1$

Theorem

TRIORTHGONALITY

Triorthogonal codes

Finding the exotic codes

Reed-Muller codes are $[[p^m - 1, 1, ?]]$ codes where m is the order. Simplest qubit triorthgonal code in the "Reed-Muller" family is order 4.

whenever v = v' = v'' $\sum_{j} v_j^3 = \begin{cases} 0 \pmod{p} & v \in G_0 \\ a \neq 0 \pmod{p} & v \in G_1 \end{cases}$ otherwise, $\sum_{j} v_j v_j' v_j'' = 0 \pmod{p}$

Earl Campbell

QUTRITS

Triorthogonal codes Finding the exotic codes

(0	0	1
	1	2	0
	1	1	1

- smaller code; 1.
- 2. worse distance;
- 3. worse overhead (gamma);
- 4. threshold?

Simplest qudit "Reed-Muller" code for dimension 3

$$\begin{split} V|n\rangle &= \tau^n |n\rangle \\ \text{with } \tau &= \exp\left[i\frac{2\pi}{3^2}\right] \end{split}$$

an $\left[\left[8,1,2
ight]
ight]$ code so order 2

Compared to 15 qubit:

QUTRITS: THRESHOLDS

In higher dimensions, $\epsilon = 1 - \langle M | \rho | M \rangle$ doesn't uniquely identify the state.

Veitch et. al. New Journal of Physics **14** 113011 (2012)

Earl Campbell

Let us look a slice of state space (which we can always project onto) We parameterize by $z = tr[M\rho]$

QUDITS IN BIG DIMENSIONS

Gives a triorthonormal family of order 1 Reed-Muller codes. [[p-1, 1, 2]]

Earl Campbell

Triorthogonal codes

Finding the exotic codes

Simplest qudit "Reed-Muller" code for dimension 5 $\frac{1}{1} \quad \frac{2}{1} \quad \frac{3}{1} \quad \frac{4}{1} \quad \frac{4}{1} \quad \frac{1}{1} \quad \frac{3}{1} \quad \frac{4}{1} \quad \frac{1}{1} \quad \frac{3}{1} \quad \frac{3}$ for dimension 7 for dimension 11 4 5 6 7 89 10

PERFORMANCE

Earl Campbell

Overhead

remember $N \le A_{\epsilon} \log^{\gamma}(\epsilon_{\text{target}})$

Magic States pt 2 Beyond linear functions

HIGHER DEGREE

Reed-Muller codes in more detail

- define generating matrix in terms of functions Ο

$$G = \left(\frac{G_0}{G_1}\right) = \begin{pmatrix} f_1(1) & f_1(2) & \dots & f_1(p-1) \\ f_2(1) & f_2(2) & \dots & f_2(p-1) \\ & & \vdots & & \\ \frac{f_r(1) & f_r(2) & \dots & f_r(p-1)}{1 & 1 & \dots & 1} \end{pmatrix}$$

- O earlier we had only 1 function $f_1(x) = x$
- Ο

$$f_1(x) = x, f_2(x) = x^2, \dots f_r(x) = x^r$$

Earl Campbell

• stick to first-order codes $[[(p^m - 1), 1, ?]]$

a <u>degree-r Reed-Muller code</u> to has generating functions

KEY RESULT!

Reed-Muller codes in more detail

A degree-r Reed-Muller code is triorthgonal if

1. consider a triple-product from G_0 $g(x) = f_a(x)f_b(x)f_c(x) = x^q$ q = a + b + c

E. Campbell. *Phys. Rev. Lett* **113** 230501 (2014)

Earl Campbell

a <u>degree-r Reed-Muller code</u> to has generating functions $f_1(x) = x, f_2(x) = x^2, f_r(x) = x^r$

Result

r < (p-1)/3Furthermore, it can detect up-to r errors.

2. for prime numbers we know

$$\sum_{x} x^{q} \pmod{p} = \begin{cases} 0 & q \neq 0 \pmod{p-1} \\ p-1 & q = 0 \pmod{p-1} \end{cases}$$

3. triorthgonality ensured if $\forall a, b, c \leq r$ we have a + b + c

PERFORMANCE

Overhead

Earl Campbell

Threshold

PERFORMANCE

I. Bengtsson, K. Blanchfield, E. Campbell, M. Howard J. Phys. A: Math. Theor. **47** 455302 (2014) appendix of E. Campbell. Phys. Rev. Lett **113** 230501 (2014)

Earl Campbell

Threshold

GRAND COMPARISON

Earl

BALANCED INVESTMENT

MULTI-LEVEL DISTILLATION

E C. Jones., *Phys. Rev. A* **87**, 042305 (2013)

CIRCUIT COMPLEXITY

Earl Campbell

Value?

D. Browne, H. Anwar, M. Howard, F. Watson, I. Bengtsson, K. Blanchfield,

THANK YOU!

- 1. Hey Earl, can you show that M is in the 3 level of **Clifford hierarchy?**
- 2. Can you say more about how triorthgonality entails transversality of a non-Clifford?
- **3. Why does the distance increase for higher degree Reed-Muller code?**
- 4. Hang on, what is a Reed-Muller codes?
- 5. Can I see more plots please?
- 6. OK, Gamma is high and thresholds are high, but whats about yields?
- 7. Aren't colour codes fun, what about gauge colour codes?

Background image: **Computation Cloud** installation piece **Libby Heany**

Stooge slide

NON-CLIFFORD PROOF

1. You want me to show that M is in the 3 level of Clifford hierarchy? $M\mathcal{P}M^{\dagger} = \mathcal{C}$

Qudits (p>3)

$$M|n\rangle = \omega^{n^3}|n\rangle$$

with $\omega = \exp\left[i\frac{2\pi}{p}\right]$

is diagonal in Z basis so

 $MZM^{\dagger} = Z$

$$MXM^{\dagger}|n\rangle$$

But in exponent all arithmetic is modulo **p**, so $MXM^{\dagger}|n\rangle$

so
$$MXM^\dagger|\imath$$

Earl Campbell

$$= \omega^{-n^{3}} M X |n\rangle$$

$$= \omega^{-n^{3}} M |n \oplus 1\rangle$$

$$= \omega^{-n^{3} + (n \oplus 1)^{3}} |n \oplus 1\rangle$$

$$= \omega^{-n^3 + (n+1)^3} | n \oplus 1 \rangle$$

$$= \omega^{3n^2 + 3n + 1} | n \oplus 1 \rangle$$

$$= X \omega^{3n^2 + 3n + 1} | n \rangle$$

$$= \omega X \mathcal{Z}_{3,3} | n \rangle$$

$$|u\rangle = \omega X \mathcal{Z}_{3,3} \in \mathcal{C}$$

NON-CLIFFORD PROOF

2. You want me to show that triorthgonality entails M transversality?

Qudits (p>3)

$$M|n\rangle = \omega^{n^3}|n\rangle$$

with $\omega = \exp\left[i\frac{2\pi}{p}\right]$

so for a transversal gate $M_L = M^\mu \otimes M^\mu \otimes \dots M_\mu$

we demand that

 $M_L |m_L\rangle = \omega^{m^3} |m_L\rangle$

for a flavour of the proof let us look at just

 $M_L |0_L\rangle = |0_L\rangle$

$$\begin{split} |0_L\rangle &= \frac{1}{\sqrt{p}} \sum_{u \in \text{span}[G_0]} |u\rangle \\ \text{so clearly} \quad M_L |u\rangle &= |u\rangle, \, \forall u \in \text{span}[G_0] = |u\rangle \implies M_L |0_L\rangle = |0_L \\ M_L |u\rangle &= \bigotimes_n M^{\mu} |u\rangle = \omega^{\mu \sum_j u_j^3} \\ \text{equire} \quad M_L |u\rangle &= \bigotimes_n M^{\mu} |u\rangle = \omega^{\mu \sum_j u_j^3} |u\rangle \text{ entails } \mu \sum_j u_j^3 = 0 \pmod{2} \end{split}$$

$$\begin{split} |0_L\rangle &= \frac{1}{\sqrt{p}} \sum_{u \in \text{span}[G_0]} |u\rangle \\ \text{so clearly} \quad M_L |u\rangle &= |u\rangle, \, \forall u \in \text{span}[G_0] = |u\rangle \implies M_L |0_L\rangle = |0_L \\ M_L |u\rangle &= \bigotimes_n M^{\mu} |u\rangle = \omega^{\mu \sum_j u_j^3} \\ \text{require} \quad M_L |u\rangle &= \bigotimes_n M^{\mu} |u\rangle = \omega^{\mu \sum_j u_j^3} |u\rangle \text{ entails } \mu \sum_j u_j^3 = 0 \pmod{2} \end{split}$$

we write
$$u = \sum_{v \in \mathcal{U}}$$

$$\sum_{j} u_j^3 =$$

Earl Campbell

v where \mathcal{U} is some subset of rows from G_0

$$\sum_{j} (\sum_{v \in \mathcal{U}} v_j)^3$$
$$\sum_{v \in \mathcal{U}} \sum_{v' \in \mathcal{U}} \left(\sum_{v'' \in \mathcal{U}} \sum_{j} v_j v'_j v''_j \right)$$

zero for triorthgonal matrix

NON-CLIFFORD PROOF

3. You want me to show that code distance scales with r?

Want to find minimum weight Z[u] such that [Z[u]] $[Z[u], X[v]] = \omega^{\sum_j u_j v_j} \quad \text{we write} \quad v = \{f(1), f(2)\}$ $[Z[u], X[v]] = 0 \iff \sum$

let us assume for brevity $h(x) = x^m$

therefore require $\sum x^{m+t} = 0 \pmod{p}$ for all

Recall: for prime numbers we know

$$\sum_{x} x^{q} \pmod{p} = \begin{cases} 0 & q \neq 0 \pmod{p-1} \\ p-1 & q = 0 \pmod{p-1} \end{cases}$$
SO,

Therefore
$$\operatorname{wt}[Z(u)] \geq r$$

Earl Campbell

$$\label{eq:star} \begin{split}], X[v]] &= 0 \ \ \text{for all} \ \ v \in G_0 \\ 2), \dots f(p-1) \rbrace, \ u &= \{h(1), h(2), \dots h(p-1) \rbrace \\ \sum_x f(x) h(x) &= 0 \pmod{p} \end{split}$$

$$t t \leq r$$

$m m \le p - 1 - r$

but low degree functions can only have a small number of zeros, which tells us $\operatorname{wt}[Z(u)] \ge p-1-m$

MORE ON REED-MULLER CODES

4. Hang on, what is a quantum Reed-Muller code again?

for order **m** we have a $[[p^m - 1, 1, d]]$ code

consider functions $f: \mathbb{F}_p^m / \{0\} \to \mathbb{F}_p$

then G_0 has rows corresponding to different functions and columns evaluate the function at different values

so exam

ple if p=2 and m=3, with 3 different function f1, f2, f3

$$G_0 = \begin{pmatrix} f_1(0,0,1) & f_1(0,1,0) & f_1(1,0,0) & f_1(1,1,0) & f_1(1,0,1) & f_1(0,1,1) & f_1(1,1,1) \\ f_2(0,0,1) & f_2(0,1,0) & f_2(1,0,0) & f_2(1,1,0) & f_2(1,0,1) & f_2(0,1,1) & f_2(1,1,1) \\ f_3(0,0,1) & f_3(0,1,0) & f_3(1,0,0) & f_3(1,1,0) & f_3(1,0,1) & f_3(0,1,1) & f_3(1,1,1) \end{pmatrix}$$

these functions can again be polynomials of x1, x2, x3,

For example
$$f_1(x_1, x_2, x_3) = x_1$$

 $f_2(x_1, x_2, x_3) = x_2$ gives
 $f_3(x_1, x_2, x_3) = x_3$

Earl Campbell

$$G_0 = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

PERFORMANCE OF DIMENSION 5 CASE

5/6. More plots please, yes of course....

dimension 3

Earl Campbell

dimension 5

