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“Perhaps the prettiest number system of all is the balanced ternary notation” 
Donald Knuth
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A contemporary approach to fault-tolerant quantum computing 

STORAGE

Use QEC code 
to reduce 
noise. 

MAGIC STATES
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inject extra 
gates.
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to produce any  
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ALGORITHMS

Implement 
quantum 
computation,

PROFIT

! " # 



OVERVIEW



Earl 
Campbell

Storage Magic States

CODE 1 
Efficient, high-threshold, 
allows fault-tolerant  
implementation of 
(most) Clifford group gates. 

CODE 2 
Allows fault-tolerant  
implementation of a  

non-Clifford gate, 
e.g.  pi/8 gate

e.g. Toric code e.g. Reed-Muller codes

ML ⇠ M ⌦M ⌦M . . .
fault-tolerant ~ transversal

ROUTES TO UNIVERSALITY
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Magic StatesStorage

SUBSYSTEM CODES + GAUGE FIXING 
Only 1 code. Potentially fewer resources needed. 

But must also allow fault-tolerant non-Clifford gate.

-

A. Paetznick and B. W. Reichardt, Phys. Rev. Lett. 111, 090505 (2013). 
H. Bombin et. al., New J. Phys. 15, 055023 (2013) 
 J. T. Anderson et. al., Phys. Rev. Lett. 113, 080501 (2014). 
T. Jochym-O’Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014).

Many other alternative, but all rely on these exotic codes

e.g. gauge colour codes,  
or gauge variants of  
Reed-Muller codes

ROUTES TO UNIVERSALITY
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We propose families of protocols for magic-state distillation—important components of fault-tolerance

schemes—for systems of odd prime dimension. Our protocols utilize quantum Reed-Muller codes with

transversal non-Clifford gates. We find that, in higher dimensions, small and effective codes can be used

that have no direct analogue in qubit (two-dimensional) systems. We present several concrete protocols,

including schemes for three-dimensional (qutrit) and five-dimensional (ququint) systems. The five-

dimensional protocol is, by many measures, the best magic-state-distillation scheme yet discovered. It

excels both in terms of error threshold with respect to depolarizing noise (36:3%) and the efficiency

measure known as yield, where, for a large region of parameters, it outperforms its qubit counterpart by

many orders of magnitude.

DOI: 10.1103/PhysRevX.2.041021 Subject Areas: Quantum Information

I. INTRODUCTION

The central challenge of implementing scalable quan-
tum computing is to protect quantum systems against noise
and decoherence while retaining the capacity to perform
computation. Quantum error correction and fault-tolerant
techniques provide a solution to this problem, and a variety
of constructions for fault-tolerant quantum computation
have been proposed [1–4]. In all these schemes, a delicate
balance must be maintained between coherently manipu-
lating the encoded system while preserving the protected
subspace and prohibiting the proliferation of errors. For
example, for schemes built on stabilizer codes [5], trans-
versal gates have the desired properties, while, in topologi-
cal systems, topologically protected braiding operations
[2] provide the logical gates. While much work in quantum
computation has focused on qubits (two-level systems), it
is known that, for any prime d, effective codes exist for
storing d-level quantum systems [5–7]. Thus, qudit sys-
tems are also candidates for scalable fault-tolerant quan-
tum computation.

In many approaches, the protected unitary gates are a
subset of the so-called Clifford group. It is known that the
stabilizer operations (comprising Clifford unitaries as well
as preparation and measurements in the computational
basis) can be classically simulated efficiently [5,6,8] and
that, on their own, they are not universal for quantum
computation. Furthermore, several theorems have shown
[9–12] that, in general, there is a tension between providing
protection against generic noise and achieving universal
quantum computing.

Despite these obstacles, fault-tolerant universal quan-
tum computing is possible [1]. One particularly success-
ful approach, known as state injection, is to achieve
universality by augmenting the fault-tolerant operations
with a supply of many copies of a suitable ancillary
resource state. While methods for the direct preparation
of sufficiently noise-free protected resource states have
been proposed [1], a particularly elegant solution can be
provided by distillation techniques, outlined in Fig. 1,
where many noisy copies of a resource state can be
distilled to arbitrary fidelity by using only error-protected
operations while preserving the error threshold of the
model.

More copies
lower fidelity

Fewer copies
higher fidelity

FIG. 1. An outline of a single round of magic-state-distillation
protocol. Within many architectures of fault-tolerant quantum
computing, a large proportion of the device is committed to these
magic-state factories. Each attempt uses n copies of a state ! and
when successful outputs a state !0 / Eð!"nÞ. For n given suc-
cessful attempts, the output states are used as inputs into the next
iteration. Within the magic-state model, the completely positive
map, E, is composed of a sequence of Clifford unitaries and Pauli
measurements. This figure illustrates a protocol where n ¼ 4, for
example, the ququint, d ¼ 5, protocol that we discuss through-
out the article.
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Abstract
Qudit toric codes are a natural higher-dimensional generalization of the well-
studied qubit toric code. However, standard methods for error correction of the
qubit toric code are not applicable to them. Novel decoders are needed. In this
paper we introduce two renormalization group decoders for qudit codes and
analyse their error correction thresholds and efficiency. The first decoder is a
generalization of a ‘hard-decisions’ decoder due to Bravyi and Haah
(arXiv:1112.3252). We modify this decoder to overcome a percolation effect
which limits its threshold performance for many-level quantum systems. The
second decoder is a generalization of a ‘soft-decisions’ decoder due to Poulin
and Duclos-Cianci (2010 Phys. Rev. Lett. 104 050504), with a small cell size to
optimize the efficiency of implementation in the high dimensional case. In each
case, we estimate thresholds for the uncorrelated bit-flip error model and provide
a comparative analysis of the performance of both these approaches to error
correction of qudit toric codes.

Keywords: topological error correcting codes, toric code, qudits, thresholds,
renormalization group decoders
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Enhanced fault-tolerant quantum computing in d-level systems
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Error correcting codes protect quantum information and form the basis of fault-tolerant quantum computing.
Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a
transversal non-Clifford gate. Codes with the desired property are presented for d-level, qudit, systems with
prime d. The codes use n = d � 1 qudits and can detect up to ⇠d/3 errors. We quantify the performance of
these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we
find performance is always enhanced by increasing d.

PACS numbers: 03.67.Ac,03.67.Lx,03.67.Pp

Quantum error-correction stores information in a subspace
of a larger physical Hilbert space and is an efficient method of
protecting quantum information from noise. Repeated mea-
surements and error-corrections keep the information from
drifting too far out of the error-correction subspace, also
called the codespace. For robust quantum computation, we
must be able to perform gates without leaving a protected
codespace or amplifying existing errors. Fault-tolerance
is straightforward for a limited set of gates, the so-called
transversal gates of the code. Unfortunately, severe con-
straints exist [1–4] that mean such direct approaches cannot
provide gates sufficient for universal quantum computation.
Rather, we must rely on additional techniques to implement
further fault-tolerant gates.

One route to universality is to prepare high-fidelity resource
states and then use state-injection to convert the resource state
into a fault-tolerant gate [5–11]. Reduction of noise in these
resource states, sometimes known as magic states [8], re-
quires extensive distillation methods demanding that the ma-
jority of a quantum computer is a dedicated magic state fac-
tory [12, 13]. Due to the significant resource overhead, max-
imizing efficiency of these protocols is of paramount impor-
tance, and recently many improvements have been made [14–
16]. One could try to circumvent this overhead by explor-
ing one of many other ways to achieve universality [17–23].
However, all these proposals have to sacrifice some error cor-
recting capabilities, and so are only viable when physical op-
erations are much less noisy (such as was explicitly shown in
Ref. [19]). Except for Shor’s method [17], these alternative
routes require codes with a rare property, and such codes also
play a fundamental role in most magic state distillation (herein
MSD) protocols. Specifically, these codes have as a transver-
sal gate the U⇡/8 phase gate, which is special as it is outside
the Clifford group yet still closely related to it.

In almost every route to fault-tolerance, these exotic codes
emerge as pivotal components. Here, we tackle the problem
of designing and improving analogous codes in the qudit set-
ting of using d-level elementary systems. In this setting, qu-
dit error-correction [27–29] has been long known, but only
much later were analogs of U⇡/8 phase gate characterized [30]
and codes discovered with these as transversal gates [31].
Campbell, Anwar, and Browne (herein CAB) analyzed sev-

eral quantifiers of performance for magic state distillation us-
ing these codes [31, 32]. CAB found marked improvement
over comparable qubit codes for modest sizes d = 3, 5. How-
ever, in even larger dimensions (d > 5) performance again
declined. This fall in performance is peculiar, especially in
light of other results showing qudit toric codes have thresholds
increasing with system dimension [33–35]. Here we present
MSD protocols with commensurate improvements to thresh-
olds and, more importantly, an unexpected improvement to
efficiency that is not present in toric codes. Fault-tolerant Clif-
ford gates [36] can be provided by toric codes, and our proto-
cols extend this to a universal set of fault-tolerant gates; with
both components becoming more effective in higher dimen-
sions, they pose a powerful combination. Such gains will also
apply to qudit analogs of the “magic-state free” fault-tolerance
schemes [18–23].

We consider an extended class of quantum Reed-Muller
codes that are constructed in terms of polynomial functions,
whereas the work of CAB only considered linear functions.
Here we see that higher degree polynomials can be used to
construct codes with the desired transversality properties. Fur-
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FIG. 1. The performance of our QRM codes at MSD. (a) shows the
efficiency metric � (the smaller the better) for various prime d. (b)
Two curves which � fluctuates between, shown for much larger d (on
a log-scale). (c) The depolarizing noise threshold below which the
states are distillable. Raised bars show the theoretical maxima where
distillation becomes impossible [24, 25]. Where multiple maxima
appear (see d = 7), not all magic states |Mµi are equivalent (see
Ref. [26] and the Supplemental Material).
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Define a basis                                                 with all arithmetic modulo p.

Imagine states as notches on a clock face.

|0i

|1i

|2i|3i

|4i

X

{0, 1, . . . , p� 1}

X|ni = |n+ 1i
Z|ni = !n|ni
where ! = ei2⇡/p

Pauli-group       :P

generators

Clifford group      is normaliser of        so     

X↵,� |ni = |↵n+ �i
Z↵,� |ni = !↵n+�n2 |ni

Overcomplete set of generators 

Assuming p is an odd prime!

H|ni = 1p
p

P
m !nm|mi

CX |ni|mi = |ni|m+ ni

C CPC† = PP

INTRODUCING QUDITS
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Stabilizers

are still 4-body terms  
but “daggerized”

The toric code straightforwardly generalizes
though we have to adjust the code slightly

QUDIT TORIC CODES

Z
Z

stars

plaquettes
Z†

X†

X†X

X

Z†
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though we have to adjust the code slightly
The toric code straightforwardly generalizes

Logical operators
are still closed loops 
(in the homological sense)

ZL
Z Z Z Z Z Z

QUDIT TORIC CODES
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though we have to adjust the code slightly
The toric code straightforwardly generalizes

X

X

X

X

X

X

XL

Logical operators
are still closed loops 
(in the homological sense)

the shortest loop is length  
in a code of          qudits.2L2

[[2L2, 2, L]]They are                          codes. 

QUDIT TORIC CODES
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G. Duclos-Cianci, D. Poulin.,  

Phys. Rev. Lett. 104, 050504

BROOM RENORMALISATION

MINIMUM WEIGHT PM

S.Bravyi, J, Haah  

Phys. Rev. Lett. 111, 200501

DECODERS
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Thresholds improve with p; 

Thresholds follow ~69% of the hashing bound threshold; 

We need to tweak broom to get this.            

         H. Anwar, et al New J. Phys. 16 063038 (2014)

Decoding and Thresholds

F. Watson, H. Anwar, D. Browne  arXiv:1411.3028

Advantage persists in when accessing for noisy stabiliser 
measurement.  Thresholds  up to 8% 

G. Duclos-Cianci, D. Poulin., Phys. Rev. A 87 062338 
R. Andrist, J. Wootton, H. Katzgraber., arXiv:1406.5974




Similar results in:

broom
enhanced-broom
renormalisation

69% hashing bound threshold

dimension p

th
re

sh
ol

d 
(%

) 

RESULTS
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Good examples of non-Clifford gates

Qubit Qudits (p>3)

 M. Howard, J. Vala.,  Phys. Rev. A 86, 022316 (2012) 
E. Campbell, H. Anwar, D. Browne., Phys. Rev. X 2 041021 (2012)

with

Qutrit (p=3)

with

U |ni = ⌫n|ni

with ⌧ = exp


i
2⇡

3

2

�
! = exp


i
2⇡

p

�
⌫ = exp


i
2⇡

2

3

� V |ni = ⌧n|ni M |ni = !n3

|ni

NON-CLIFFORD GATES
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Good examples of non-Clifford gates

Clifford hierarchy 3rd level
Conjugates Pauli group to Clifford group

MPM† = C

Qubit Qudits (p>3) are CUBIC gates

with

Qutrit (p=3)

with

U |ni = ⌫n|ni

with ⌧ = exp


i
2⇡

3

2

�
! = exp


i
2⇡

p

�
⌫ = exp


i
2⇡

2

3

� V |ni = ⌧n|ni M |ni = !n3

|ni

enables gate-injection using  
resource of magic-states

where
C = MXmM†|Mi = M |+i = 1

p
p

X

n

!n3

|ni ZX† |mi|Mi

CM | i| i

NON-CLIFFORD GATES
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 S. Brayvi and A. Kitaev., Phys. Rev. A 71, 022316 (2005) 
E. Campbell, H. Anwar, D. Brown., Phys. Rev. X 2 041021 (2012)

for noise rate                                            we find

 Given an [[n,k,d]] code with transversal M

✏
out

< ✏✏ < ✏⇤A threshold:      if                  then 

Exponential: 

Overhead:          

where we use N raw copies, and 

N  A✏ log
�
(✏target)

✏
out

< C✏d

� = log(n/k)/ log(d)

✏ = 1� hM |⇢|Mi

CO
DE

 1
no

is
y

purer

Cliffords only

projects onto 
CODE 2 

subspace

|Mi

|M
i

MAGIC STATE DISTILLATION
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Define a matrix G =

✓
G0

G1

◆
Logical states

n

k
r

|~mLi = 1p
pr

P
u2span(G0)

|u+G1 ~mi

|~0Li = 1p
pr

P
u2span(G0)

|ui

Define
stabilizer generators               for allX[~v] = Xv1 ⌦Xv2 ⌦ . . . Xvn X[~v] ~v 2 G0

logical operators               for all ~v 2 G1X[~v]

 S. Brayvi and J. Haah., Phys. Rev. A 86, 052329 (2012) 
unpublished / in preparation

qubits
qudits

A triorthgonal code has a transversal non-Clifford U, V or M (upto a Clifford)
Theorem

TRIORTHGONALITY

Definition
v, v0, v00 2 GA matrix/code is said to be triorthgonal if for all

P
j vjv

0
jv

00
j = 0 (mod p)whenever X

j

v3j =

(
0 (mod p) , v 2 G0

a 6= 0 (mod p) , v 2 G1v = v0 = v00
otherwise,
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Triorthogonal codes
Finding the exotic codes

Reed-Muller codes are                                   codes where        is the order. 
Simplest qubit triorthgonal code in the “Reed-Muller” family is order 4.

0

BBBB@

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

CCCCA

v
v0

v00

v · v0 · v00 = ( 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 )
X

j

vj · v0j · v00j = 2 = 0 (mod 2)

U |ni = ⌫n|ni

⌫ = exp


i
2⇡

2

3

�

[[pm � 1, 1, ?]] m

TRIORTHGONALITY

Definition
v, v0, v00 2 GA matrix/code is said to be triorthgonal if for all

P
j vjv

0
jv

00
j = 0 (mod p)whenever X

j

v3j =

(
0 (mod p) , v 2 G0

a 6= 0 (mod p) , v 2 G1v = v0 = v00
otherwise,
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Triorthogonal codes
Finding the exotic codes

Simplest qudit “Reed-Muller” code 
for dimension 3

0

@
0 0 1 1 1 2 2 2
1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1

1

A

[[8, 1, 2]]an                         code so order 2

Compared to 15 qubit: 
1. smaller code; 
2. worse distance; 
3. worse overhead (gamma); 
4. threshold?

with ⌧ = exp


i
2⇡

3

2

�V |ni = ⌧n|ni

QUTRITS
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Input error rate

O
ut

pu
t e

rr
or

 ra
te

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4
0

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

0.5

0

In higher dimensions,  
                                 
doesn’t uniquely identify the state.
✏ = 1� hM |⇢|Mi

✏⇤dep = 0.211

✏⇤ = 0.200

Input error rate

O
ut

pu
t e

rr
or

 ra
te

✏⇤dep = 0.363

✏⇤ = 0.311

Distillable
Physical

Bound

Stabilizer

R
e(

z)

Im(z)

Let us look a slice of state space  
(which we can always project onto) 
We parameterize by z = tr[M⇢]

 Veitch et. al.  New Journal of Physics 14 113011 (2012)

QUTRITS: THRESHOLDS
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Triorthogonal codes
Finding the exotic codes

Simplest qudit “Reed-Muller” code 
for dimension 5✓
1 2 3 4
1 1 1 1

◆

for dimension 7✓
1 2 3 4 5 6
1 1 1 1 1 1

◆

✓
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1

◆for dimension 11

Gives a triorthonormal family of order 1 Reed-Muller codes. 

with ! = exp


i
2⇡

p

�M |ni = !n3

|ni

QUDITS IN BIG DIMENSIONS

[[p� 1, 1, 2]]
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Qudit dimension p
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0.25
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0.75

1

Qudit dimension p

2 3 5 7 11 13 17

✏⇤ d
ep

Threshold

remember
N  A✏ log

�
(✏target)

PERFORMANCE



Magic States pt 2
Beyond linear functions


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Reed-Muller codes in more detail

stick to first-order codes

define generating matrix in terms of functions

earlier we had only 1 function f1(x) = x

a degree-r Reed-Muller code to has generating functions

[[(pm � 1), 1, ?]]

G =

✓
G0

G1

◆
=

0

BBBBB@

f1(1) f1(2) . . . f1(p� 1)
f2(1) f2(2) . . . f2(p� 1)

...
fr(1) fr(2) . . . fr(p� 1)
1 1 . . . 1

1

CCCCCA

HIGHER DEGREE

f1(x) = x, f2(x) = x

2
, . . . fr(x) = x

r
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Reed-Muller codes in more detail

a degree-r Reed-Muller code to has generating functions

 E. Campbell.  Phys. Rev. Lett 113 230501 (2014)

f1(x) = x, f2(x) = x

2, fr(x) = x

r

Result

A degree-r Reed-Muller code is triorthgonal if 

Furthermore, it can detect up-to       errors. r

r < (p� 1)/3

1.  consider a triple-product from 

g(x) = fa(x)fb(x)fc(x) = x

q

KEY RESULT!

G0 2.  for prime numbers we know

X

x

x

q

(mod p) =

(
0 q 6= 0 (mod p� 1)

p� 1 q = 0 (mod p� 1)

3. triorthgonality ensured if                           we have 8a, b, c  r a+ b+ c < p� 1

q = a+ b+ c
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

no cloning 
limit for QEC

PERFORMANCE
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dimension p dimension p
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2 3 5 7 11 13 17 19 23

Overhead

✏⇤ d
ep

Th
re

sh
ol

d

0

0.25

0.5

0.75

1

2 3 5 7 11 13 17

Threshold

 I. Bengtsson, K. Blanchfield, E. Campbell, M. Howard 
J. Phys. A: Math. Theor. 47 455302 (2014) 
appendix of E. Campbell.  Phys. Rev. Lett 113 230501 (2014)

PERFORMANCE

dimension p dimension p
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0

0.25

0.5

0.75

1

Overhead measured by gamma

1.5 1.875 2.25 2.625 3

Qudit QRM Qubit QRM Bravyi-Haah Meier et. al.

Worse

3

5

7

11
13

17

Bravyi-Haah limit

Better

 S. Brayvi and J. Haah., Phys. Rev. A 86, 052329 (2012) 
A. Meier, B. Eastin, and E. Knill., QIC 13, 195 (2013)

GRAND COMPARISON
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C. Jones., Phys. Rev. A 87, 042305 (2013)

raw

raw

raw

MULTI-LEVEL DISTILLATION
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Value?

CIRCUIT COMPLEXITY



THANK YOU!

Thanks to 
D. Browne, H. Anwar, M. Howard,  
F. Watson, I. Bengtsson, K. Blanchfield,  
and



Background image: 
Computation Cloud 
installation piece 
Libby Heany

Stooge slide 
1. Hey Earl, can you show that M is in the 3 level of 

Clifford hierarchy? 
2. Can you say more about how triorthgonality entails 

transversality of a non-Clifford? 
3. Why does the distance increase for higher degree 

Reed-Muller code? 
4. Hang on, what is a Reed-Muller codes? 
5. Can I see more plots please? 
6. OK, Gamma is high and thresholds are high, but 

whats about yields? 
7.  Aren’t colour codes fun, what about gauge colour 

codes?
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Qudits (p>3)

with ! = exp


i
2⇡

p

�M |ni = !n3

|ni

1. You want me to show that M is in the 3 level of Clifford hierarchy?
MPM† = C

MZM† = Z
is diagonal in Z basis so

MXM†|ni = !�n3

MX|ni
= !�n3

M |n� 1i
= !�n3+(n�1)3 |n� 1i

But in exponent all arithmetic is modulo p, so

MXM †|ni = !�n3+(n+1)3 |n� 1i
= !3n2+3n+1|n� 1i
= X!3n2+3n+1|ni
= !XZ3,3|ni

so

MXM†|ni = !XZ3,3 2 C
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Qudits (p>3)

with ! = exp


i
2⇡

p

�M |ni = !n3

|ni

so for a transversal gate
ML = Mµ ⌦Mµ ⌦ . . .Mµ

we demand that

ML|mLi = !m3

|mLi
for a flavour of the proof let 
us look at just

ML|0Li = |0Li

2. You want me to show that triorthgonality entails M transversality?

require

so clearly

|0Li =
1
p
p

X

u2span[G0]

|ui

ML|ui = |ui, 8u 2 span[G0] = |ui =) ML|0Li = |0Li

ML|ui =
O
n

Mµ|ui = !µ
P

j u3
j

ML|ui =
O
n

Mµ|ui = !µ
P

j u3
j |ui entails µ

X

j

u3
j = 0 (mod p)

u =
X

v2U
vwe write                         where         is some subset of rows fromU G0

P
j u

3
j =

P
j(
P

v2U vj)3

=
P

v2U
P

v02U

⇣P
v002U

P
j vjv

0
jv

00
j

⌘

zero for triorthgonal matrix
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3. You want me to show that code distance scales with r?

Want to find minimum weight Z[u] such that                                       for all[Z[u], X[v]] = 0 v 2 G0

[Z[u], X[v]] = !
P

j ujvj we write 

[Z[u], X[v]] = 0 ()
X

x

f(x)h(x) = 0 (mod p)

v = {f(1), f(2), . . . f(p� 1)}, u = {h(1), h(2), . . . h(p� 1)}

let us assume for brevity h(x) = x

m

Recall: for prime numbers we know
X

x

x

q

(mod p) =

(
0 q 6= 0 (mod p� 1)

p� 1 q = 0 (mod p� 1)

therefore require  
X

x

x

m+t

= 0 (mod p) for all t  r

SO,… m  p� 1� r
but low degree functions can only have a small number of zeros, which tells us wt[Z(u)] � p� 1�m

Therefore wt[Z(u)] � r
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4. Hang on, what is a quantum Reed-Muller code again?

for order m we have a                              code

consider functions f : Fm
p /{0} ! Fp

then         has rows corresponding to different functions and columns evaluate the function at different values G0

so example if p=2 and m=3, with 3 different function f1, f2, f3

G0 =

0

@
f1(0, 0, 1) f1(0, 1, 0) f1(1, 0, 0) f1(1, 1, 0) f1(1, 0, 1) f1(0, 1, 1) f1(1, 1, 1)
f2(0, 0, 1) f2(0, 1, 0) f2(1, 0, 0) f2(1, 1, 0) f2(1, 0, 1) f2(0, 1, 1) f2(1, 1, 1)
f3(0, 0, 1) f3(0, 1, 0) f3(1, 0, 0) f3(1, 1, 0) f3(1, 0, 1) f3(0, 1, 1) f3(1, 1, 1)

1

A

these functions can again be polynomials of x1, x2, x3,

f1(x1, x2, x3) = x1

f2(x1, x2, x3) = x2

f3(x1, x2, x3) = x3

For example gives G0 =

0

@
0 0 1 1 1 0 1
0 1 0 1 0 1 1
1 1 0 1 0 1 1

1

A

[[pm � 1, 1, d]]
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5/6. More plots please, yes of course….
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