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ROBUST GATES FROM NOISY ONES

• Transverse gates.

• Benign error propagation.

• Single errors are recoverable.
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J. von Neumann. In C. Shannon and J. McCarthy (editors) Automata Studies, pages 43--98, Princeton University Press. (1956).

Repetition code Transverse gates
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ERROR PROPAGATION IN 
TRANSVERSE CIRCUITS 

Errors only propagate within blocks.
Example: Cnot in CSS stabilizer codes.
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THE EASTIN & KNILL THEOREM (2008)

• Transversal logical gates are not universal for QC

Restrictions on Transversal Encoded Quantum Gate Sets

Bryan Eastin* and Emanuel Knill
National Institute of Standards and Technology, Boulder, Colorado 80305, USA

(Received 28 November 2008; published 18 March 2009)

Transversal gates play an important role in the theory of fault-tolerant quantum computation due to

their simplicity and robustness to noise. By definition, transversal operators do not couple physical

subsystems within the same code block. Consequently, such operators do not spread errors within code

blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are

required, as it is invariably the case that some encoded gates cannot be implemented transversally. This

observation has led to a long-standing conjecture that transversal encoded gate sets cannot be universal.

Here we show that the ability of a quantum code to detect an arbitrary error on any single physical

subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.

DOI: 10.1103/PhysRevLett.102.110502 PACS numbers: 03.67.Lx, 03.67.Pp

Quantum computation appears to be intrinsically more
powerful than its classical counterpart. Efficient quantum
algorithms have been found for certain problems that,
using the best known classical algorithms, require resour-
ces that scale as a superpolynomial function of the problem
size [1–3]. However, implementing a computation large
enough to take advantage of such scaling properties is a
daunting challenge. Given the difficulty of constructing
quantum hardware, it seems likely that the software for
the first quantum computers will need to incorporate sig-
nificant amounts of error checking.

As in the classical case, quantum errors are rendered
detectable by encoding the system of interest into a sub-
space of a larger, typically composite, system. A quantum
code simply specifies which states of a quantum system
correspond to which logical (encoded) information states.
Errors that move states outside of the logical subspace can
be detected by measuring the projector P onto this sub-
space. Thus, an error E is detectable, in the sense that it can
be discovered or eliminated, if and only if

PEP / P:

Of course, not all errors can be detected; for any nontrivial
code there are operators that act in a nontrivial way within
the logical subspace. Most commonly, quantum codes are
designed to permit the detection of independent, local
errors and, as a consequence, are incapable of detecting
some errors that affect many subsystems.

For quantum computation, it is necessary not only to
detect errors but also to apply operators (gates) that trans-
form the logical state of the code. Even when error pro-
cesses are local and independent, however, the operations
entailed in computing can generate correlated errors from
uncorrelated ones. Thus, for error detection to be effective,
it is important that the logical operators employed during a
quantum computation be designed to limit the spread of
errors. It is particularly important that operators do not
spread errors within code blocks, where a block of a

quantum code is defined as a collection of subsystems for
which errors on subsystems in the collection are detected
independently of those on subsystems outside of it.
Managing the spread of errors is the subject of the theory
of fault-tolerant quantum computing [4,5]. One of the
primary techniques of this theory is the use of transversal
encoded gates.
We label as ‘‘transversal’’ any partition of the physical

subsystems of a code such that each part contains one
subsystem from each code block. Given a transversal
partition of a code, an operator is called transversal if it
exclusively couples subsystems within the same part. Put
another way, an operator is transversal if it couples no
subsystem of a code block to any but the corresponding
subsystem in another code block. Transversal operators are
inherently fault tolerant. They can spread errors between
code blocks, thereby increasing the number of locations at
which a code block’s error might have originated, but,
since errors on different code blocks are treated indepen-
dently, the total number of errors necessary to cause a
failure is unchanged. This is in contrast to nontransversal
operators, where, for example, an encoded gate coupling
every subsystem in a code block might convert an error on
a single subsystem into an error on every subsystem of the
code block.
In view of the above, it would be highly desirable to

carry out quantum computations exclusively using trans-
versal encoded gates. To allow for arbitrary computation, it
is necessary that the set of gates employed be universal,
that is, that it be capable of implementing any encoded
operator on the logical state space to arbitrarily high accu-
racy. However, in spite of substantial effort, no gate set for
a nontrivial quantum code has yet been found that is both
universal and transversal. Consequently, a long-standing
question in quantum information theory is whether there
exist nontrivial quantum codes for which all logical gates
can be implemented transversally. For stabilizer codes, this
question has recently been answered in the negative. Zeng,

PRL 102, 110502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 MARCH 2009

0031-9007=09=102(11)=110502(4) 110502-1

Don’t panic ! Fault-tolerant computation is still possible.

B. Eastin, E. Knill, Restrictions on Transversal Encoded Quantum Gate Sets, arXiv: 0811.4262 [quant-ph] (2008).
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TQFT codes
Topological 

quantum field theories
(vacua)

FAMILIES OF QECC
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LOGICAL GATES FROM 
LOCAL INTERACTIONS

IN TOPOLOGICAL CODES
SUPERCONDUCTING

QUBIT ARRAYS OPTICAL LATICES

SOLID STATE
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ERROR PROPAGATION IN 
LOCAL CIRCUITS 

Errors only propagate geometrically by some constant radius.

t
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TQFT

THE BRAVYI-KÖNIG THEOREM (2012)

• Under a more physically realistic setting

D-dim lattice

Logical gate U : low-depth unitary gate (i.e. Local unitary)

• For a stabilizer code in D dim, logical gates 

implementable by local circuits are restricted to the 

D-th level of the Clifford hierarchy.

Theorem

Bravyi, S., & König, R. (2013). 
Classification of Topologically Protected Gates for Local Stabilizer Codes. 
Physical Review Letters, 110(17), 170503. 

Subsystem

Stabilizer

TQFT
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TQFT

THE BRAVYI-KÖNIG THEOREM (2012)

• Under a more physically realistic setting

D-dim lattice

Logical gate U : low-depth unitary gate (i.e. Local unitary)

• For a stabilizer code in D dim, logical gates 

implementable by local circuits are restricted to the 

D-th level of the Clifford hierarchy.

Theorem

???

Bravyi, S., & König, R. (2013). 
Classification of Topologically Protected Gates for Local Stabilizer Codes. 
Physical Review Letters, 110(17), 170503. 

Subsystem

Stabilizer

TQFT
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P3

P1

CLIFFORD HIERARCHY

Sets of unitary transformations on N qubits

= Pauli group:  X,Y,Z, XX, -ZZIZZI, ...

= Clifford group: CNOT, Hadamard, R2,...

P0 ⌘
P1

D. Gottesman (1998), The Heisenberg Representation of Quantum Computers, arXiv:quant-ph/9807006.

P3 has R3 & Toffoli. Not a group, but a set.

Gottesman, D., & Chuang, I. L. (1999). 
Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, 402(6760), 390–393. 

Clifford group is classically simulable.

P = R2 =

✓
1 0
0 i

◆

R3 =

✓
1 0
0 ei⇡/4

◆

Pn+1 = {U : 8V 2 Pauli, UV U†V † 2 Pn}
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EXAMPLE: COLOR CODE
• Transverse Gates:

H = H⨂N

X = X⨂N Y = -Y⨂N Z = Z⨂N

Cnot = Cnot⨂N

P = ⨂j∈[1,N] Pj±1

Bombin, H., & Martin-Delgado, M. (2007). Topological Computation without Braiding. Physical Review Letters, 98(16), 160502.

Daniel Nigg, Markus Müller, Esteban A. Martinez, Philipp Schindler, Markus Hennrich, Thomas Monz, Miguel Angel Martin-Delgado, 
and Rainer Blatt. Quantum Computations on a Topologically Encoded Qubit.  Science 2014

Full transverse Clifford group!
(assuming logical qubits can be stacked)
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LITERATURE & RESULTS
Quantum Code type Transverse gate 

no geometry
Const. depth circ. +
locally defined code

Stabilizer B. Zeng,  A. Cross & I. L. Chuang
2007

S. Bravyi & R. König
2013

Arbitrary B. Easting & E. knill
2008

Subsystem F. Pastawski & B. Yoshida
2014

TQFT
M. Beverland, R. T. König, F. 

Pastawski, J. Preskill & S. Sijher
2014

Now!

Friday!
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•Cleaning in Quantum error correcting codes
•Stabilizer codes
•Sub-system codes
•Central proof ideas.
•Summary of gate constraints.
•Conclusions & further directions

OUTLINE
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STABILIZER CODES
SUBSYSTEM CODES

& CLEANING LEMMAS
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PRE-CLEANING LEMMA

9⇤R : ⇢ = P0⇢ ) ⇤RTrR[⇢] = ⇢

can be cleaned.
11

Figure 1. Support of a logical operator P 2 C(S) is shown by the colored dots
(representing X , Y and Z operators). In order to clean out the region M (interior
of the dashed ellipse) one can multiply P with a stabilizer S 2 S. The stabilizer
S includes only those generators Sa whose support overlaps with M . It yields
an equivalent logical operator P S acting trivially on M . The cleaning can be
performed simultaneously for different logical operators and for different spacial
regions.

which includes all Pauli operators P 2 P(M) that can be extended to some element of S. In
other words SM is a group obtained by restricting elements in S to M . Note that if some element
P 2 S crosses the boundary of M then the restriction of P onto M is no longer element of S.
By definition S(M) ✓ SM ✓ P(M) ✓ P .

For any subgroup S ✓ P define a centralizer of S denoted as C(S) as a group of Pauli
operators commuting with every element of S,

C(S) = {P 2 P : P S = S P for all S 2 S}.
Our main technical tool will be the following ‘cleaning’ lemma. It allows one to clean out any
region M ⇢ 3 of size smaller than the distance such that no logical operator of the code contains
X , Y or Z on qubits of M . More formally, one can multiply any logical operator P 2 C(S) by a
stabilizer S 2 S such that P S acts trivially on M . The stabilizer S uses only those generators Sa

whose support overlaps with M , see figure 1. The cleaning lemma is particularly useful when
the generators of S are local. In this case, the cleaning changes P only inside M and in a small
neighborhood of the boundary of M . Thus the cleaning of P can be done multiple times, so that
multiple ‘holes’ can be made into the support of P .

Lemma 1 (Cleaning lemma). Let S = hS1, . . . , Smi be a stabilizer code and M ✓ 3 be an
arbitrary subset of qubits. Denote J (M) the set of indexes a such that the support of Sa overlaps
with M. Then one of the following is true:

(1) There exists a nontrivial logical operator P 2 C(S)\S whose support is contained in M.
(2) For any logical operator P 2 C(S) one can choose a stabilizer

S =
Y

a2J (M)

Sxa
a , xa 2 {0, 1}

such that P S acts trivially on qubits of M.

Proof. Let hiI i ✓ P be a subgroup of phase factors. By definition of the subgroups SM and
S(M) one has the following inclusion:

hiI i ·S(M) ✓ C(SM) \P(M). (12)

New Journal of Physics 11 (2009) 043029 (http://www.njp.org/)

Correctable regions: 

Errors on a region R (subset of qubits) are detectable iff

E. Knill, R. Laflamme, Phys. Rev. A 55, 900 (1997).

Tr[O⇢] = Tr[⇤†
R(O)⇢]

OR̄ = ⇤†
R(O)O
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THE STABILIZER FORMALISM

• The code space:

Gottesman, D. (1997, May). Stabilizer Codes and Quantum Error Correction. quant-ph/9705052.  Thesis @ Caltech.

P = hi,Xj , Zji• The Pauli group |P| = 4(N+1)

• A stabilizer subgroup

[gi, gj ] := gigjg
†
i g

†
j =

X4

Z1

X3X2X1

Z2 Z3

X5 X8X6

Z4 Z5 Z6 Z7 Z8

X7 X9

Z9
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CLEANING LEMMA

Bravyi, S., & Terhal, B. (2009). A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes. NJP, 11(4), 043029. 

R

• For stabilizer codes:
• Bounded support growth for locally defined stabilizer codes.

• Union lemma: If two correctable regions don’t share 
stabilizers their union is correctable.

O OR̄ = ⇤†
R(O)

O 2 P ) OR̄ 2 P

Monday, December 22, 14



EXAMPLE: 5 QUBIT CODE

•Detects up to two errors anywhere

Laflamme, R., Miquel, C., Paz, J. P., & Zurek, W. H. (1996). Perfect Quantum Error Correcting Code. Physical Review Letters, 77(1), 198. 

• Stabilizer group

• Encodes 1 logical qubit X̄ = XXXXX Z̄ = ZZZZZ

• Suppose we loose second and fourth qubits
Z̄ ⌘ Y IZIYX̄ ⌘ ZIXIZ

S = hZIZXX,XZIZX,XXZIZ,ZXXZIi

X5

Z5Z4

X4X1 X2

Z1 Z2 Z3

X3
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SUBSYSTEM CODES

Poulin, D. (2005). Stabilizer Formalism for Operator Quantum Error Correction. Physical Review Letters, 95(23), 230504–4.

X1 X8X2 X7

Z4

X6X5X4

Z5 Z6 Z7Z1 Z2 Z3 Z8

X3 X9

Z9
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SUBSYSTEM CODES

Poulin, D. (2005). Stabilizer Formalism for Operator Quantum Error Correction. Physical Review Letters, 95(23), 230504–4.

X1 X8X2 X7

Z4

X6X5X4

Z5 Z6 Z7Z1 Z2 Z3 Z8

X3 X9

Z9

X7

Z4

X6X5X4

Z5 Z6 Z7
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SUBSYSTEM CODES

Poulin, D. (2005). Stabilizer Formalism for Operator Quantum Error Correction. Physical Review Letters, 95(23), 230504–4.

X1 X8X2 X7

Z4

X6X5X4

Z5 Z6 Z7Z1 Z2 Z3 Z8

X3 X9

Z9

X7

Z4

X6X5X4

Z5 Z6 Z7

• A gauge subgroup
(Not necessarily commuting) H 2 K(G)

Hamiltonian
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SUBSYSTEM CODES

Poulin, D. (2005). Stabilizer Formalism for Operator Quantum Error Correction. Physical Review Letters, 95(23), 230504–4.

• Stabilizer subgroup, center of G (sign freedom):

X1 X8X2 X7

Z4

X6X5X4

Z5 Z6 Z7Z1 Z2 Z3 Z8

X3 X9

Z9

X7

Z4

X6X5X4

Z5 Z6 Z7

• A gauge subgroup
(Not necessarily commuting) H 2 K(G)

Hamiltonian
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SUBSYSTEM CODES

• Bare logical operators:

Poulin, D. (2005). Stabilizer Formalism for Operator Quantum Error Correction. Physical Review Letters, 95(23), 230504–4.

• Stabilizer subgroup, center of G (sign freedom):

X1 X8X2 X7

Z4

X6X5X4

Z5 Z6 Z7Z1 Z2 Z3 Z8

X3 X9

Z9

X7

Z4

X6X5X4

Z5 Z6 Z7

• A gauge subgroup
(Not necessarily commuting) H 2 K(G)

Hamiltonian
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SUBSYSTEM CODES

• Bare logical operators:

Poulin, D. (2005). Stabilizer Formalism for Operator Quantum Error Correction. Physical Review Letters, 95(23), 230504–4.

• Stabilizer subgroup, center of G (sign freedom):

•Dressed logical operators:

X1 X8X2 X7

Z4

X6X5X4

Z5 Z6 Z7Z1 Z2 Z3 Z8

X3 X9

Z9

X7

Z4

X6X5X4

Z5 Z6 Z7

• A gauge subgroup
(Not necessarily commuting) H 2 K(G)

Hamiltonian
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SUBSYSTEM CODES DUALITY

Bravyi, S. (2011). Subsystem codes with spatially local generators. Physical Review A, 83(1), 012320. 

X8

Z8

X9

Z9

X7

Z4

X6X5X4

Z5 Z6

X1 X2

Z7Z1 Z2 Z3

X3
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 SUBSYSTEM CLEANING

Bravyi, S., & Terhal, B. (2009). A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes. NJP, 11(4), 043029. 

• Also for subsystem codes codes:

• Bounded support growth of dressed operators for locally 
generated gauge group.

• Union lemmas for bare and dressed cleanable regions.
Warning: local gauge operators may yield non-local stabilizers

R

O OR̄ = ⇤†
R(O)

O 2 P ) OR̄ 2 P
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EXAMPLE: 4 QUBIT CODE

•Detects one error anywhere. Corrects none.

Bacon, D., Brown, K. R., & Whaley, K. B. (2001). Coherence-Preserving Quantum Bits. Physical Review Letters, 87(24), 247902. 

• Stabilizer group

• Encodes 1 logical qubit
• Suppose we loose the first qubit (correctable)

• Gauge group:

S = hXXXX,ZZZZi

Z4

X3 X4

Z3

X1 X2

Z1 Z2

G = hXXII, IIXX, IZZI, ZIIZi

Z̄ = ZZIIX̄ = XIIX

X̄ ⌘ IXXI Z̄ ⌘ IIZZ

•Dress-clean (1st and 3rd qubits)

X̄dressed ⌘ IXIX Z̄dressed ⌘ IZIZ
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REDERIVING BRAVYI-KÖNIG
CLASSIFICATION OF TOPOLOGICALLY 

PROTECTED  GATES ON STABILIZER CODES  subsystem

and important observations

Bravyi, S., & König, R. (2013). 
Classification of Topologically Protected Gates for Local Stabilizer Codes. 
Physical Review Letters, 110(17), 170503. 

Pastawski, F., & Yoshida, B. (2014). 
Fault-tolerant logical gates in quantum error-correcting codes. 
arXiv:1408.1720

Subsystem

Stabilizer
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Theorem: Every transverse dressed logical operator 
U supported on the union of a correctable region 
Λ0 and n dressed-cleanable regions {Λj}(j∈[1,n]), 
must correspond to a logical operator in Pn.

BK FOR SUBSYSTEM CODES
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COMMUTATOR CLEANING

[U, V ] = UV U†V † =

R[U,V ] ✓ RU [RV
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COMMUTATOR CLEANING

V is transverse.

[U, V ] = UV U†V † =

R[U,V ] ✓ RU [RV

R[U,V ] ✓ RU
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COMMUTATOR CLEANING

V is transverse.

[U, V ] = UV U†V † =

U also transverse.

R[U,V ] ✓ RU [RV

R[U,V ] ✓ RU \RV

R[U,V ] ✓ RU
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R0,  R1,  R2,  ...  Rm-1, Rm

V1

Vm

... 

... 

... 

... 

• Consider arbitrary Pauli logical operators V0, V1, ... Vm.

Hierarchy

Pauli

[U,V]=UVU-1V-1group commutator :
Monday, December 22, 14



R0,  R1,  R2,  ...  Rm-1, Rm

V1

Vm

... 

... 

... 

... 

• Consider arbitrary Pauli logical operators V0, V1, ... Vm.

... Um

Hierarchy

Pauli

[U,V]=UVU-1V-1group commutator :

Um-1=[Um,Vm] ... 
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R0,  R1,  R2,  ...  Rm-1, Rm

V1

Vm

... 

... 

... 

... 

• Consider arbitrary Pauli logical operators V0, V1, ... Vm.

... Um

Hierarchy

Pauli

[U,V]=UVU-1V-1group commutator :

U0=[U1,V1] ... 

U1=[U2,V2] ... 

U2=[U3,V3] ... 

Um-1=[Um,Vm] ... 

... 

... 
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R0,  R1,  R2,  ...  Rm-1, Rm

V1

Vm

... 

... 

... 

... 

• Consider arbitrary Pauli logical operators V0, V1, ... Vm.

... Um

Hierarchy

Pauli

Complex phase

P1 (Pauli)

Pm-1

Pm goal

[U,V]=UVU-1V-1group commutator :

U0=[U1,V1] ... 

U1=[U2,V2] ... 

U2=[U3,V3] ... P2 (Clifford gr.)

Um-1=[Um,Vm] ... 

... 

... 

Monday, December 22, 14



BK REGION DECOMPOSITION7

IV. CONSTANT DEPTH CIRCUITS AND
GEOMETRIC LOCALITY

Discussions so far do not rely on geometric locality of
required generators in the code, which is one of the most
important features to assess its experimental feasibility.
The underlying assumption of geometric locality is that
physical qubits are associated to particles on a regular
lattice and check operators involve only particles within
a constant sized neighborhood. More precisely, the gauge
group G may be generated by a set of Pauli operators,
each one having support restricted to a ball of diameter
⇠ = O(1). In this section, we generalize BK’s result to
topological subsystem codes that are supported on a D-
dimensional lattice with geometrically local generators.

A. Union lemma

A challenge in generalizing BK’s result is that the so-
called union lemma does apply to topological subsystem
codes. The union lemma for a topological stabilizer code
states that the union of two spatially disjoint cleanable
regions is also cleanable. Here two regions are spatially
disjoint if local stabilizer generators overlap with at most
one of the regions.

Lemma 6. [Union lemma (stabilizer code)] For a
topological stabilizer code, let R

1

and R
2

be two spatially
disjoint regions such that there exists a complete set of
stabilizer group generators {Sj} each intersecting at most
one of {R

1

, R
2

}. If R
1

and R
2

are cleanable, then the
union R

1

[ R
2

is also cleanable.

At this point, let us review the derivation of BK’s result
in order to illustrate the use of the union lemma. For a
topological stabilizer code with a growing code distance,
one is able to split the D-dimensional space into D + 1
regions Rm for m = 0, . . . , D where Rm consists of small
regions with constant size connected components which
are spatially disjoint. Let us demonstrate it for D = 2
(see Fig. 2). We first split the entire lattice into patches
of square tiles so that the diameter of local stabilizer
generators is much shorter than the spacing of tiles. This
square tiling has three geometric object; points, lines and
faces. First, we “fatten” points to create regions R

0

. We
then fatten lines and create regions R

1

. The remaining
regions are identified to be R

2

. Therefore Rm is the union
of fattened m-dimensional objects. For a D-dimensional
lattice, we start with a D-dimensional hyper-cubic tiling
and fatten m-dimensional objects to obtain Rm for m =
0, . . . , D.

Each of connected components in Rm is cleanable as
the code distance is growing with the system size n. Also
connected components in Rm are spatially disjoint. Due
to the union lemma, the union of spatially disjoint small
regions is correctable, and thus Rm is correctable. Then
lemma 5 implies that transversally implementable logical

gates are restricted to PD, recovering BK’s result (The-
orem 1).

FIG. 2: The partition of a two-dimensional lattice into three
regions R

0

, R
1

, R
2

which consist of smaller regions that are
correctable and spatially disjoint.

For a topological subsystem code, two regions are said
to be spatially disjoint if local gauge generators may over-
lap with at most one of the regions. Unlike a topological
stabilizer code, however, geometric locality of stabilizer
generators is not always guaranteed since the stabilizer
subgroup S is defined to be the center of the gauge group
G, and generators of S are products of multiple local
gauge generators in general. As such, the union lemma
holds only for dressed-cleanable regions as summarized
below.

Lemma 7. [Union lemma (subsystem code)] For a
topological subsystem code, let R

1

and R
2

be two spatially
disjoint regions such that there exists a complete set of
gauge group generators {Gj} each intersecting at most
one of {R

1

, R
2

}. If R
1

and R
2

are dressed-cleanable,
then the union R

1

[ R
2

is also dressed-cleanable.

It is worth emphasizing that the union lemma for bare-
cleanable regions are recovered for a topological subsys-
tem code if its stabilizer subgroup admits a complete set
of geometrically local generators. This is the case for
Bombin’s gauge color code is a three-dimensional sub-
system code.

B. Fault-tolerance and non-local stabilizer
generators

In addition to the technical di�culty, the breakdown of
the union lemma seems to taint fault-tolerance of a sub-
system code. Emergence of geometrically non-local stabi-
lizer generators prevents us from having the union lemma
for bare-cleanable regions. Indeed, this is the case for two
and three-dimensional quantum compass models [19, 22].
We should yet mention that geometrically non-local sta-
bilizer generators are hard to measure reliably and hence
undesirable for physical realizations. Namely, when non-
local stabilizer generators are supported by a large num-

Qubits participating in a D dimensional stabilizer code may 
be partitioned into D+1 correctable regions.
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Observation: Every D dimensional region in a locally 
generated subsystem code with threshold and log 
growing distance may be partitioned into a correctable 
region Λ0 and D dressed-cleanable regions {Λj}(j∈[1,D]).

GEOMETRIC OBSERVATION

9

be highly artificial and would possess highly non-local
stabilizer generators.

We now further assume that the family of codes has
a non-zero loss threshold pl > 0 and that a code dis-
tance d grows at least logarithmically with the number
of particles n. Under these reasonable and perhaps in-
dispensable assumptions for fault-tolerance of the code,
we obtain the same thesis as BK’s result for topological
subsystem codes.

Theorem 4. Consider a family of subsystem codes with
geometrically local gauge generators in D spatial dimen-
sion with i) a loss threshold pl > 0 and ii) a code distance

d = ⌦(log1�1/D(n)). Then any dressed logical unitary
that can be implemented by a constant depth geometri-
cally local circuit U must belong to PD.

As a side note, we remark that our proof technique
borrows an idea by Hastings which was used on a di↵erent
topic [25].

Proof. Let us assume for simplicity that U is transver-
sal. The argument leading to lemma 8 su�ces to make
the current proof applicable to a constant depth geomet-
rically local circuit by taking care of some cumbersome
yet inessential caveats.

Imagine that some subset of qubits, denoted as R
loss

,
is lost. This subset R

loss

is chosen so that each site has
an independent probability p

0

< pl of being included in
R

loss

. By definition of loss error threshold, R
loss

must be
correctable (in other words, bare-cleanable) with proba-
bility approaching to unity as the system size n grows.
The key idea is to make use of this randomly generated
bare-cleanable region R

loss

to construct a bare-cleanable
region R

0

which consists of spatially disjoint balls of con-
stant radius.

For any fixed region R, the probability that R is in-

cluded in R
loss

is given by Pr(R ✓ R
loss

) = p|R|
0

. So, given
a ball of radius r � ⇠, it is included in R

loss

with some
constant probability independent of n. Let us now split
the full lattice into unit cells of volume vc = c log(n) as
in Fig. 3. Inside a given unit cell, the probability of hav-
ing no ball of radius r included in R

loss

is O(1/ poly(n))
where the power of n can be made arbitrary large by
increasing a finite constant c. Hence, with probability
approaching to unity, R

loss

includes at least one ball of
radius r in each unit cell. We choose one ball from each
unit cell so that they are spatially disjoint, and denote its
union as R

0

. Then a bare-correctable region R
0

consists
of balls of diameter r that are spatially disjoint with at
most O(log(n)1/D) linear separation. Imagine a skewed
D-dimensional hyper-cubic tiling by drawing lines which
connect balls in R

0

(see Fig. 3). We then fatten m-
dimensional objects to construct a covering of the full
lattice with Rm for m = 0, . . . , D.

It remains to prove that Rm for m > 0 are dressed-
cleanable. Any region with volume smaller than d =
⌦(log1�1/D(n)) is cleanable. For m < D, Rm con-
sists of connected components with volume at most

O(log1�1/D(n)), and hence are dressed-cleanable. For
RD, suppose that there exists a non-cleanable D-
dimensional connected component, denoted as R, with
volume O(log(n)). Then R must support at least one
bare logical Pauli operator U

bare

. Yet, the disentangling
lemma [12] tells that U

bare

can be supported by qubits
that live on the boundary of R, whose volume is at most
O(log1�1/D(n)), leading to a contradiction. Therefore,
RD is dressed-cleanable. Given a bare-cleanable region
R

0

and dressed cleanable regions Rm for m = 1, . . . , D,
lemma 5 implies that transversally implementable U
must be included in PD.

FIG. 3: A construction of a bare-cleanable region R
0

. Red
dots represent balls that are included in randomly generated
subset R

loss

of qubits. Dotted lines mark unit cells with vol-
ume O(log(n)).

A further observation is that constant depth circuits
supported on a string-like region must be Pauli oper-
ators, and in general, constant depth logical operators
supported on a m-dimensional region must be in Pm re-
gardless of the spatial dimension of the lattice D � m.

V. NON-CLIFFORD GATE PROHIBITS
SELF-CORRECTION

The problem of self-correcting quantum memories
seeks to provide a Hamiltonian where the energy land-
scape prevents qubit errors at the physical level from
accumulating and irreversibly introducing a logical er-
ror in contact with a thermal environment [9, 26]. For-
mally, self-correcting quantum memory is defined as a
many-body quantum system where a logical qubit may
be encoded for a macroscopic time [27]. An important
question is whether such a system may exist in three
spatial dimensions. No-go results have ruled out most
of two-dimensional systems and a certain class of three-
dimensional systems [9, 27–29], and no known three-
dimensional model has macroscopic quantum memory
time.
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Corollary: Every transverse dressed logical operator 
U supported on a D dimensional region of a locally 
defined subsystem code with an erasure threshold and 
logarithmic diverging distance must be in PD.

GEOMETRY CONSTRAINED 
LOGICAL OPERATORS

Also extends to U with constant 

depth circuit implementations.

(like Bravyi-König)
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OBSERVATIONS
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TRADEOFF WITH 
SELF-CORRECTION
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Haah, J. (2011). Local stabilizer codes in three dimensions without string logical operators. http://arxiv.org/abs/1101.1962
Landon-Cardinal, O., & Poulin, D. (2013). Local Topological Order Inhibits Thermal Stability in 2D. Physical Review Letters, 110(9), 090502. 

Folklore:

• For thermally stable (self-correcting) memory a growing 
energy barrier is expected to be necessary.

• Logical operators supported on a string may be implemented 
sequentially excluding such a barrier.

• Stringlike regions should be correctable

SELF-CORRECTION & 
THE NO-STRINGS RULE

E
P

Z̃

Monday, December 22, 14

http://arxiv.org/abs/1101.1962
http://arxiv.org/abs/1101.1962


NO-STRINGS RULE &
DIMENSION REDUCTION

Observation: Every D dimensional 
region in a subsystem code with 
- local stabilizer generators
- growing distance 
- no-string rule 
may be partitioned into a correctable region Λ0 and D-1 
dressed-cleanable regions {Λj}(j∈[1,D-1]).

10

In this section, we derive a new no-go result on three
dimensional self-correcting quantum memory that arises
from fault-tolerant implementability of a non-Cli↵ord
gate. In particular, we show that a stabilizer Hamilto-
nian with a fault-tolerant non-Cli↵ord gate cannot have a
macroscopic energy barrier, and thus its quantum mem-
ory time is upper bounded by some constant independent
of the system size n. We then derive an upper bound
on the code distance of topological stabilizer codes with
fault-tolerant logical gates from the higher-level Cli↵ord
hierarchy.

A. Self-correction and fault-tolerance

For a topological stabilizer code, the stabilizer Hamil-
tonian is composed of geometrically local operators in
the stabilizer group: H = � P

j Sj where Sj 2 S. A
non-rigorous yet commonly used proxy to assess whether
self-correction can be achieved is the presence of a macro-
scopic energy barrier that scale with the system size.
Macroscopic energy barrier seems to be a necessary yet
insu�cient condition for the system to exhibit macro-
scopic memory time [44]. For stabilizer Hamiltonians,
the presence of string-like logical operators implies the
absence of a macroscopic energy barrier [45].

Here, we find a tradeo↵ on fault-tolerant logical gates
arising from a macroscopic energy barrier in a stabilizer
Hamiltonian.

Theorem 5. If a stabilizer Hamiltonian in D spatial
dimensions has a macroscopic energy barrier, the set of
fault-tolerant logical gates is restricted to PD�1

.

Proof. Let R
0

, R
1

, . . . , RD�1

be regions which jointly
cover the whole lattice. Each region is a collection of
disjoint parallel tubes with a fixed orientation (see Fig.
4). This covering can generically be achieved for a D-
dimensional lattice. The presence of a macroscopic en-
ergy barrier implies the absence of string-like logical op-
erators. Since there are no logical operators supported
on individual tubes, there are no logical operators sup-
ported on any of single regions Rj due to the union
lemma. In other words, regions Rj are cleanable. Ap-
plying lemma 8, we conclude that constant depth logical
gates should be restricted to PD�1

.

Haah [30, 31] provided the first example of a three-
dimensional topological stabilizer code which is free from
of string-like logical operators. The code is defined on a
three dimensional L⇥L⇥L cubic lattice with an energy
barrier scaling as O(log L). There also exist a number of
three-dimensional translation symmetric stabilizer codes
which are free from string-like logical operators [32, 33].
By theorem 5, for D = 3, the presence of a macroscopic
energy barrier implies that the set of fault-tolerant logical
gates is restricted to P

2

.

Corollary 2. Haah’s 3D stabilizer code [30] has no con-
stant depth logical gates outside of P

2

.

FIG. 4: The partition of the lattice into R
0

, R
1

, . . . , RD�1

for
D = 3.

A di↵erent approach to construct stabilizer codes with
a macroscopic energy barrier has been proposed by Mich-
nicki [34], who introduced the notion of code welding to
construct new codes by combining existing ones. The
welding technique leads to a construction of a topolog-
ical stabilizer code with a polynomially growing energy
barrier in three spatial dimensions. Our theorem 5 also
applies to this code.

Corollary 3. Michnicki’s 3D welded stabilizer code has
no constant depth logical gates outside of P

2

.

A model of a six-dimensional self-correcting quantum
memory with fault-tolerantly implementable non-Cli↵ord
gates has been proposed [35]. An intriguing question is
whether such a code may exist in four (or five) spatial
dimensions or not.

We then move to discussion on topological subsystem
codes. A generic recipe to construct Hamiltonians for
topological subsystem codes is not known. A candidate
Hamiltonian, often discussed in the literature, is com-
posed of geometrically local terms in the gauge group:
H = � P

j Gj [46]. Regardless of the choice of the Hamil-
tonian, the presence of bare-logical operators with string-
like support implies the absence of an energy barrier as
long as terms in the Hamiltonian consist only of local
generators of the gauge group G.

For topological subsystem codes, we obtain a less re-
strictive tradeo↵ between fault-tolerant implementability
and geometric non-locality of logical gates.

Corollary 4. If a topological subsystem code in D spa-
tial dimensions has macroscopic energy barrier, the set
of transversal operators is restricted to PD.

The three-dimensional gauge color code has transver-
sal gates in P

2

and do not have string-like bare logical
operators, and hence are not ruled out from having a
macroscopic energy barrier.
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COROLLARY

• Haah code, Michnicki code, Kim code, Brell 
code and all other no string codes in 3D have no non-clifford 
logical operators.
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CODE DISTANCE TRADEOFF

[U ] 2 Pn ) d  O(LD+1�n)

• d>Ln: A regular lattice and large distance implies a generalized 
no-string (no slab) rule. 

• We get an upper bound for code distance from the converse
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TRADEOFF WITH 
ERASURE THRESHOLD
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Pryadko Leonid (Personal communication)

• Erasure threshold pe: An i.i.d. random subset of qubits 
taken with probability p<pe is correctable with high probability.

• There is a partition into n correctable regions

• Transverse logicals are in 

• Identify trade-off of transverse gates with erasure threshold pe

ERASURE THRESHOLD

n :=

⇠
1

pe

⇡

Pn�1

[U ] 2 Pn ) pe  1/n

Note that:

loss threshold ≥ error threshold

• n-th level Cliffords require linear weight stabilizers in n (Pryadko)
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Summa ry : O b s e r v a t i o n s a n d 
extensions of BK results to subsystem 
codes. Requires threshold & d > log

Recover result for fault-
to le r an t subsys tem 
codes with local gauge 
group in D-dimensions.

Strengthen result 
when impos ing 
ene r gy ba r r i e r 
th rough a no -
string rule
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In this section, we derive a new no-go result on three
dimensional self-correcting quantum memory that arises
from fault-tolerant implementability of a non-Cli↵ord
gate. In particular, we show that a stabilizer Hamilto-
nian with a fault-tolerant non-Cli↵ord gate cannot have a
macroscopic energy barrier, and thus its quantum mem-
ory time is upper bounded by some constant independent
of the system size n. We then derive an upper bound
on the code distance of topological stabilizer codes with
fault-tolerant logical gates from the higher-level Cli↵ord
hierarchy.

A. Self-correction and fault-tolerance

For a topological stabilizer code, the stabilizer Hamil-
tonian is composed of geometrically local operators in
the stabilizer group: H = � P

j Sj where Sj 2 S. A
non-rigorous yet commonly used proxy to assess whether
self-correction can be achieved is the presence of a macro-
scopic energy barrier that scale with the system size.
Macroscopic energy barrier seems to be a necessary yet
insu�cient condition for the system to exhibit macro-
scopic memory time [44]. For stabilizer Hamiltonians,
the presence of string-like logical operators implies the
absence of a macroscopic energy barrier [45].

Here, we find a tradeo↵ on fault-tolerant logical gates
arising from a macroscopic energy barrier in a stabilizer
Hamiltonian.

Theorem 5. If a stabilizer Hamiltonian in D spatial
dimensions has a macroscopic energy barrier, the set of
fault-tolerant logical gates is restricted to PD�1

.

Proof. Let R
0

, R
1

, . . . , RD�1

be regions which jointly
cover the whole lattice. Each region is a collection of
disjoint parallel tubes with a fixed orientation (see Fig.
4). This covering can generically be achieved for a D-
dimensional lattice. The presence of a macroscopic en-
ergy barrier implies the absence of string-like logical op-
erators. Since there are no logical operators supported
on individual tubes, there are no logical operators sup-
ported on any of single regions Rj due to the union
lemma. In other words, regions Rj are cleanable. Ap-
plying lemma 8, we conclude that constant depth logical
gates should be restricted to PD�1

.

Haah [30, 31] provided the first example of a three-
dimensional topological stabilizer code which is free from
of string-like logical operators. The code is defined on a
three dimensional L⇥L⇥L cubic lattice with an energy
barrier scaling as O(log L). There also exist a number of
three-dimensional translation symmetric stabilizer codes
which are free from string-like logical operators [32, 33].
By theorem 5, for D = 3, the presence of a macroscopic
energy barrier implies that the set of fault-tolerant logical
gates is restricted to P

2

.

Corollary 2. Haah’s 3D stabilizer code [30] has no con-
stant depth logical gates outside of P

2

.

FIG. 4: The partition of the lattice into R
0

, R
1

, . . . , RD�1

for
D = 3.

A di↵erent approach to construct stabilizer codes with
a macroscopic energy barrier has been proposed by Mich-
nicki [34], who introduced the notion of code welding to
construct new codes by combining existing ones. The
welding technique leads to a construction of a topolog-
ical stabilizer code with a polynomially growing energy
barrier in three spatial dimensions. Our theorem 5 also
applies to this code.

Corollary 3. Michnicki’s 3D welded stabilizer code has
no constant depth logical gates outside of P

2

.

A model of a six-dimensional self-correcting quantum
memory with fault-tolerantly implementable non-Cli↵ord
gates has been proposed [35]. An intriguing question is
whether such a code may exist in four (or five) spatial
dimensions or not.

We then move to discussion on topological subsystem
codes. A generic recipe to construct Hamiltonians for
topological subsystem codes is not known. A candidate
Hamiltonian, often discussed in the literature, is com-
posed of geometrically local terms in the gauge group:
H = � P

j Gj [46]. Regardless of the choice of the Hamil-
tonian, the presence of bare-logical operators with string-
like support implies the absence of an energy barrier as
long as terms in the Hamiltonian consist only of local
generators of the gauge group G.

For topological subsystem codes, we obtain a less re-
strictive tradeo↵ between fault-tolerant implementability
and geometric non-locality of logical gates.

Corollary 4. If a topological subsystem code in D spa-
tial dimensions has macroscopic energy barrier, the set
of transversal operators is restricted to PD.

The three-dimensional gauge color code has transver-
sal gates in P

2

and do not have string-like bare logical
operators, and hence are not ruled out from having a
macroscopic energy barrier.

Identify trade-off of 
transverse gates with 
erasure threshold perr

[U ] 2 Pn ) perr  1/n

Identify trade-off with code distance d
[U ] 2 Pn ) d  O(LD+1�n)
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HAMILTONIAN PHASES 
VS. STATE PHASES

Observation: In 2D stabilizer codes, encoded magic 
and stabilizer states are in different phases.

Observation: Translation invariant Hamiltonians can 
adiabatically, prepare stabilizer code states efficiently.
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CONCLUSIONS
• Local processing is not enough for universality.

• Require non-local quantum (or classical)

•Measurement and feedback dependent on 
non-local classical processing

•Outlook: Topological quantum field theories  :)
             LDPC codes.
             Non-local-gates.
             Classify the subgroups of P3 (or even Pn).
              Interplay with fault tolerance techniques
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REDERIVING BRAVYI-KÖNIG
CLASSIFICATION OF LOCAL GATES ON 

STABILIZER CODES  Topological quantum field theories

Beverland, M. E., König, R., Pastawski, F., Preskill, J., & Sijher, S. (2014). 
Protected gates for topological quantum field theories.
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