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introduction

The 5−qubit code

Probability of error after decoding the 5-qubit code
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introduction

An alternative strategy for concatenation
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introduction

The message of this talk

I It is possible to concatenate with a rate 1 code (so no protection

against errors at all...) and still achieve something nontrivial when

the rate 1 code is a convolutional code.
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introduction

Improving the 5−qubit code

Figure 1: Probability of error after decoding

– complexity of encoding ≈ complexity of encoding a 5-qubit code

– Rate 1
5 →

1
8

– same complexity of decoding as the 5-qubit code

– modified quantum turbo-code construction
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Introduction

serial quantum turbo-codes

I as for quantum LDPC codes it is possible to build such codes and

decode them with iterative decoding algorithms.

I freedom to introduce randomness in the construction what we do

not have for quantum LDPC codes.

I much simpler to construct.

I but there are also some problems related to encoding issues...
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serial concatenation

2. Concatenation of codes

– Pn Pauli group over n quits

– Clifford transformation U : U†PnU ∈ Pn
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serial concatenation

I Physical error P = P1P2 . . . Pn

I Logical error,syndrome LS = L1L2 . . . Lk︸ ︷︷ ︸
logical error

S1 . . . Sn−k︸ ︷︷ ︸
syndrome

= U†PU

n

S
n−k

k

L

PU
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serial concatenation

Stabilizer, Normalizer

I Stabilizer set S corresponds to L = I . . . I, S ∈ {I, Z}n−k :

S =

{
U(I . . . I︸ ︷︷ ︸

k

S)U†, S ∈ {I, Z}n−k
}

I Normalizer set N corresponds to S ∈ {I, Z}n−k.

N =
{
U(L, S)U†, S ∈ {I, Z}n−k

}
I Quantum minimum distance

dquantum = min{|P | ∈ N \ S}
dclassical = min {|P | ∈ N \ {I . . . I}}
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introduction

Serial concatenation of codes

symbols
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minimum distance

3. Minimum Distance Properties

When the inner code is a juxtaposition of small codes
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minimum distance

out
U

Dout

out
L
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out

Sin

Dcon ≤ Doutn.
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minimum distance

The problem (I)

L1...Lk1 S1...Sr1︸ ︷︷ ︸
Sout

S′1...S
′
r2︸ ︷︷ ︸

Sin

Uout→ L′1, ..., L
′
k1+r1

S′1, ..., S
′
r2︸ ︷︷ ︸

Sin

Π→ L′π(1), ..., L
′
π(k1+r1), S

′
1, ..., S

′
r2

Uin→ P1, ..., Pk1+r1+r2
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minimum distance

The problem (II)

Assume that there exists for the inner code a bound D such that

for each i ∈ {1, . . . , k1 + r1} and every P ∈ {X,Y, Z} there exists a

choice for the S′j’s in {I, Z} such that∣∣∣∣∣∣Uin(
i−1 times︷ ︸︸ ︷
I . . . I P

k1+r1−i times︷ ︸︸ ︷
I . . . I S′1, . . . S

′
r2

)U†in

∣∣∣∣∣∣ ≤ D

then if the minimum distance of the outer code is Dout the minimum

distance of the concatenated code is upper bounded by DoutD
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stabilizer

The problem(III)

L1...Lk1 S1...Sr1︸ ︷︷ ︸
Sout

S′1...S
′
r2︸ ︷︷ ︸

Sin

Uout→ L′1, ..., L
′
k1+r1

S′1, ..., S
′
r2︸ ︷︷ ︸

Sin

with
∣∣L′1, ..., L′k1+r1

∣∣ = Dout

Π→ L′π(1), ..., L
′
π(k1+r1), S

′
1, ..., S

′
r2

for each of the L′π(i) 6= I consider the corresponding S′i1 . . . S′ir2

and mutiply them to obtain S′1, . . . , S
′
r2

Uin→ P1, ..., Pk1+r1+r2

with |P1 . . . Pk1+r1+r2| ≤ DoutD
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minimum distance

When the inner encoder is convolutional
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minimum distance
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minimum distance

Classical setting

I Choose Uout and Uin as (classical) convolutional encoders.

I [Kahale-Urbanke-ISIT 1998] In the classical case, by an averaging

argument, if the free distance of Cout is dout and if Uin is a non-

catastrophic and recursive encoder, then the minimum distance of

the resulting code is typically of order Θ

(
N

dout−2
dout

)
.

I Generalizes easily to the quantum setting ?
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minimum distance

A first problem

Theorem 1. [Poulin-Tillich-Ollivier-ISIT 2008] There are no

quantum convolutional encoders which are at the same time non-

catastrophic and recursive.
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minimum distance

Catastrophic/recursive

(S0, L1, S1, . . . , Li, Si, . . . )
conv. encoder−→ P = (P1, P2, . . . , ) with

S0 ∈ {I, Z}m, Si ∈ {I, Z}n−k for i ≥ 1

L
def
= L1, L2, . . . ,

I Non-catastrophic encoder : supp(P ) finite ⇒ supp(L) finite.

I Recursive encoder : |L| = 1⇒ supp(P ) infinite.
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minimum distance

A crucial argument used in the classical setting

Consider convolutional encoders for which

|L| ≤ |P |
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minimum distance

A quantum convolutional encoder that does the job
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minimum distance

A theorem

Theorem 2. [Abbara-Tillich - ITW 2011] If the inner code is the

aforementioned convolutional code of rate 1 and the outer code is

a juxtaposition of copies of a quantum code of classical minimum

distance dclassical and quantum minimum distance dquantum, then with

probability→ 1 as the length N of the inner code→∞ the minimum

distance Dcon of the concatenated scheme satisfies

– Dcon = Ω

(
N

dclassical−2
dclassical

)
if dclassical > 2

– Dcon = Ω
(

logN
log logN

)
if dclassical = 2 and dquantum ≥ 3.
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construction

The construction

A first attempt
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construction

Decoding
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construction

The problem

outer code
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construction

The modified construction

0>

C

C

C

C

0>

0>

0>

0>

0>

0>

0>

0>

0>

0>

0>

0>

inner convolutional 

code of rate 1

interleaver

0>

0>

0>

0>

0>

0>

0>

26/34



Results

QuBit-error probability after decoding
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Results

Probability of error per block
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Results

Entropy evolution during decoding

(P1) + 1st position of the outer code sent directly to the channel

decoding trajectory
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further

5. Going further : a multilevel construction
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further

Analysis on the erasure channel

Theorem 3. Let t be the number of stages of the concatenated

construction where we assume that the underlying block code C is

of minimum distance 3. Then the probability pt that a logical qubit

stays erased after transmission of the encoded words over an erasure

channel of erasure probability p is given by

pt = O
(
p3t+1+3t−3

)
t 1 2 3

pt O(p9) O(p33) O(p105)
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further

Results

Figure 2: Probability of error after decoding/comparison with the

5-qubit code
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Summary

Theorem 4. [Poulin-Tillich-Ollivier-08] There are no quantum

convolutional encoders which are at the same time non-catastrophic

and recursive.
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Summary/Conclusion

I Non-catastrophic and non-recursive encoders[Poulin-Tillich-
Ollivier-09] :

– ⇒ Constant minimum distance...

– Might be interesting up to moderate blocklength.

I catastrophic and recursive encoders

– iterative decoding does not converge (the scheme has to be

modified).

– the minimum distance might be unbounded.

The work presented here : exploring the option catastrophic and

recursive encoder.
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