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Motivations
Main idea

Motivations

I Fault tolerance → robust computer (major obstacle):
I Classical fault tolerance – e.g. repetition code
I Quantum fault tolerance – e.g. transversal gates with ancilla

constructions, topological fault tolerance

I We know of various protocols of fault tolerance, we want to
understand them in some unified framework.

I Achieved:
I Developed conjecture of a global and geometric picture of

unitary quantum fault tolerance.
I Proof of conjecture for transversal gates
I Proof of conjecture for a family of topological codes, including

the toric code

I Hope: new insights, new fault tolerant protocols . . .
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Main idea

Conjecture

Correspondence for appropriate fibre bundles F , with base space M:

Unitary

fault tolerance

Fibre bundle F with
flat proj. connection

Fault-tolerant
logical gates

Monodromy rep.

of π1(M)

The conjecture (→) is proven for the cases of: focus of the talk

I transversal gates and

I generalized string operators for a family of topological codes.
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Ingredients of quantum fault tolerance
Example 1: Transversal gates definition
Example 2: Toric code definition

Ingredients of a fault-tolerant protocol

Error

Model
QECC

FT

Operations

Here, we focus on

only the QECCs and

the FT operations.
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Example 1: Transversal gates definition

I Code blocks (of equal size): qudits represented by same colour

I Transversal gates: Interact the i th qudit of each block

A transversal gate on multiple blocks of a QECC can be considered as a
transversal gate on a single block of a QECC with larger physical qudits.
We group together qudits in the same column to make the larger qudits.
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Example 2: Modified toric codes and String operators

I Original toric code by Kitaev in arXiv:quant-ph/9707021

I Modified toric code Hamiltonian (primal defects at Sv , dual at Sf ):

H(Sv ,Sf ) = −
∑

v∈V\Sv

Av −
∑

f∈F\Sf

Bf +
∑
v∈Sv

Av +
∑
f∈Sf

Bf .

String operators

transport defects.
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Fibre bundles and QECC correspondences
Unitary evolutions and pre-connections
Restricting toM⊂ Gr(K ,N) and F ⊂ U(N)
Projective flatness and monodromy action

Fibre bundle – The Möbius band

I Constituents: total space, base space, fibre, structure group

I An example:

A nontrivial fibre bundle over the base space S1 (in red) with fiber R
(fiber at one point shown in blue). Structure group is Z2 in this case.
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Base space: Codes as the Grassmannian manifold

Over the next couple of slides, we build up the “big vector bundle”
for our picture, from mathematical objects natural for QEC. First,

I Base space is the Grassmannian (a set of codes):
I An ((n,K )) qudit code is a K -dimensional subspace in CN

where N = dn (n-qudit Hilbert space).
I Gr(K ,N) = {The set of K -dimensional subspaces in CN}

I Example: CP1 = Gr(1, 2)
I Known as the Grassmannian.

I Clearly, for N = dn,

Gr(K ,N) = {The set of ((n,K )) qudit codes}.
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Vector bundle: Codewords as the tautological vector
bundle ξ(K ,N)

I Total space is the tautological vector bundle (a set of
codewords):

I A codeword in an ((n,K )) qudit code is a pair (C ,w) where C
is an ((n,K )) qudit code and w ∈ C is a vector.

I ξ(K ,N) is a vector bundle with:
I Base space is Gr(K ,N), consisting of subspaces W
I Fibre over W is W itself, i.e. the elements are vectors w ∈ W
I Known as the tautological vector bundle

I Similarly, for N = dn, we have the natural mathematical-QEC
correspondence:

ξ(K ,N) = {Codewords in some ((n,K )) qudit code}. (1)
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Some correspondences between the theory of QECCs and
that of fibre bundles

A summary:

Quantum information objects Mathematical objects

Space of ((n,K )) qudit codes Grassmannian Gr(K ,N)
where N = dn

Space of the codewords (C ,w) tautological vector bundle ξ(K ,N)

Space of the encodings or tautological principle
orthonormal K -frames β in CN U(K )-bundle P(K ,N)
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Dynamics in unitary fault tolerance (or unitary QM)

Definition
A unitary evolution is a one-parameter family U(t) of unitary
operators such that, at time 0, U(0) = I , and as time passes, U(t)
evolves smoothly (or piecewise smoothly) with time, until at time
1, it accomplishes some target unitary U(1) = U.

I Modelling unitary evolutions in our geometric picture
I Task 1: Unitary evolutions of the codewords (states)
I Task 2: Unitary evolutions of the QECC (subspaces)
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“Dynamics” in the “big vector bundle”

I Given a unitary evolution U(t) and a code C , we obtain:
I a path in the bundle (evolution of codewords)
I a path in the base space (evolution of codes)

U(N)

Gr(K ,N)

ξ(K ,N)

U(t)

γ(t)

γ̃(t)

I

C

I Resembles a parallel transport/connection (pre-connection)
I Problem: The lift γ̃(t) of γ(t) might not be unique.
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Restricting bundle to M⊂ Gr(K ,N) and F ⊂ U(N)

Schematic illustration of the restrictions:

F

M = F(C )

ξ(K ,N)|M

F (t)

γ(t)

γ̃(t)

I

C

Conjecture (fault tolerance magic)

For appropriate restrictions (depending on FT protocol), FT ⇒ the
natural (proj.) pre-connection becomes an flat (proj.) connection.
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Examples: F and M

I Example 1: Distance ≥ 2 code with transversal gates
I C any code with distance ≥ 2.
I F = {Transversal gates} ⊂ U(N)
I M = F(C ) ⊂ Gr(K ,N)
I Flatness results follow from arXiv:0811.4262 (Eastin and Knill)

I Example 2: Toric code with string operators

C
HC ,(nv ,nf )
K ⊂ M̊ ⊂ M ⊂ Gr(K ,N)

Fdiscr Fgraph Fext

I M∼= defect configuration space (fixed number of defects,
hardcore condition); There is freedom in the choice of M.

I Flatness results in arXiv:1309.7062 (Gottesman and Zhang)
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Corollary: Monodromy action

Fault-tolerant
logical gates

Flat connection

⇒ monodromies

stabilizer
generator

logical X
logical R3

A cartoon of M for single-block transversal gates for the 5-qubit code.
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Summary and Future work

I Imperfection of the current conjecture:
I Multiple valid choices of M for the same protocol
I Lacks concrete instructions to construct M

I Improve conjecture: incorporate error model, propose
canonical construction of M for each fault-tolerant protocol.

I Stricter correspondence between FT protocols (with error
models etc.) and fibre bundles with flat (proj.) connection

I Will enable us to read off new FT protocols from a “nice”
bundle construction with flat (proj.) connection

I Proof of improved conjecture
I Extend to full fault tolerance: e.g. ancilla constructions

(appending extra degrees of freedom), measurements
I Other applications of the this geometric picture, e.g. TQFTs

and topological phases
I Thank you!
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