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2From percolation to topological codes

I Quantum erasure channel: Each qubit is erased (lost) with
probability p, independently.

I Relation with percolation: For Kitaev’s toric code,
correction of erasures is related with a statistical
mechanical model called percolation.

I Application: Apply results from percolation theory to
surface codes.
(Stace, Barrett Doherty - 2009)

Goal: derive results in percolation from quantum information.
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3Overview

Percolation Theory

From percolation to quantum error correction

Three bounds on the threshold
I no-cloning bound
I LDPC codes bound
I homological bound



4Why percolation?

The melting of ice is a phase transition at the critical point
T = 0◦C: There is a discontinuous evolution of macroscopic
properties of water.

Question:

How do local interactions between particles induce a global
behaviour?

Why percolation? It is perhaps the simplest model which
exhibits a phase transition.



5Percolation in Z2

Each edge is red, independantly with probabily p.

Question: is there an infinite red component ?



6Percolation in Z2

There is a phase transition at pc:
I if p < pc, there is an infinite red component with proba 0,
I if p > pc, there is an infinite red component with proba 1.

Goal: Determine the value of pc.

Theorem (H. Kesten, 1980 - conjectured 20 years before)
In the square lattice we have: pc = 1/2.



7Percolation in hyperbolic lattices

Let G(m) be the m-regular planar tiling.

I The exact value of pc is
unknown.

I The numerical estimation of pc
is difficult.

(Benjamini, Schramm, and later
Baek, Kim, Minnhagen and Gu,
Ziff)

We will use quantum information theory to bound pc.
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From percolation to topological
codes



9Kitaev’s toric codes (Kitaev - 1997)
I Place a qubit on each edge of a torus.
I This gives a global state |ψ〉 ∈ (C2)⊗n with n = |E|.

site operator Xv = X
X

X
X

face operator Zf =
Z
Z

Z
Z

The toric code is the ground space of

H = −
∑
v

Xv −
∑
f

Zf



10A problematic erasure
Each qubit is erased (lost), independently, with probability p.

Correctable⇔ erased clusters are planar
⇔ do not cover homology
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11From percolation to toric codes

For large tilings, we have:

Uncorrectable erasures ≈ Infinite clusters in percolation

Threshold for percolation in Z2 =⇒ Threshold for toric codes:
I p < pc ⇒ the toric code has a good performance

(Stace, Barrett Doherty - 2009)



12Construction of hyperbolic codes
First step: Relate hyperbolic percolation to topological codes.

Using finite versions of G(m), we can define hyperbolic codes:
(Freedman, Meyer, Luo - 2001, Zémor 2009)

Place a qubit on each edge, then
I Plaquette operators Xv

correspond to the edges
incident to a vertex

I Site operators Zf correspond
to faces.

The hyperbolic code is the ground space of

H = −
∑
v

Xv −
∑
f

Zf .



13A finite hyperbolic tiling of genus 5
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14From percolation to hyperbolic codes

We use quotients of G(m) (Proposed by Siran ’01) such that
I Gr(m) is a finite graph
I Gr(m) locally looks like G(m)

(balls of radius r are planar)

Then, for large r, we have:

p < pc(G(m)) ⇒ hyperbolic codes have a good performance.
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Application to percolation
I No-cloning bound



16Capacity of the quantum erasure channel

x Channel x’m Encoding Decoding m’

k qubits n qubits n qubits k qubits

What is the highest rate R = k/n with Perr → 0?
−→ It is the capacity of the channel.

Theorem (Bennet, DiVicenzo, Smolin - 97)
The capacity of the quantum erasure channel is 1− 2p.

Derived from the no-cloning theorem.



17A no-cloning upper bound in percolation

Main argument: if p < pc then R = 1− 4
m ≤ 1− 2p

Theorem (D., Zémor - ITW 10)
The critical probability on the graph G(m) satisfies:

pc ≤
2

m
.

Easy combinatorial bounds:

1

m− 1
≤ pc ≤ 1− 1

m− 1
.
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Application to percolation
I No-cloning bound
I LDPC bound



19Improving the no-cloning bound

I The no-cloning bound is tight only if hyperbolic codes
achieve capacity.

I Hyperbolic quantum codes are defined by bounded weight
generators. (LDPC).

I Classical intuition: Classical LDPC codes cannot achieve
the capacity.

Difficulty: the no-cloning bound is not related with the codes.



20A combinatorial bound

H =

I X Z Y Z
Z Z X I Z
I Y Y Y Z


E =

(
0 1 1 0 0

)
I There are 42 errors E ⊂ E

I There are 22 syndromes of errors E ⊂ E
I There are 2 equivalent errors included in E in each coset

mod the S.

−→ E can not be corrected

Lemma
We can correct 2rankH−(rankHĒ−rankHE) errors E ⊂ E.
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20A combinatorial bound

HĒ =
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21Combinatorial version of the no-cloning bound

Let (Ht) be a sequence of stabilizer matrices of codes of rate R.

Theorem (D., Zémor - QIC 2013)
If Perr → 0 then

R ≤ 1− 2p−D(p),

where

D(p) = lim sup
t

Ep[rankHt,Ē − rankHt,E ]

nt
·

Corollary: When p ≤ 1/2, we have R ≤ 1− 2p.

Remark: With hyperbolic codes, the matrices Ht are sparse.



22Rank of a random sparse matrix

 HE


︸ ︷︷ ︸

pn columns

I Typically: HE is a r × np matrix

I When np = r, the square matrix HE has almost full rank
−→ D(p) is close 0.

I BUT for a sparse matrix H, there are αn null rows in HE
−→ Bound on D(p).

I Similarly, there are βn identical rows of weight 1 ...
−→ more accurate bound.
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Application to percolation
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I LDPC bound
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24Homology of the torus
Goal: Remove the quantumness.

H1(G) = Homology group = cycles up to faces.

H1(G) = 〈γhorizontal, γvertical〉



25Intuition: threshold for appearance of homology

Recall that correctable erasure ⇔ no homology

I Let Gr be the finite version of G(m).
I Let Gr,p be a random subgraph of Gr.

Basic idea of our homological bound:
1. If p < pc, the dimension of H1(Gr,p) is small.
2. Compute the expected dimension E(dimH1(Gr,p)).

Then, if E(dimH1(Gr,p)) is large, we are beyond pc.



26A functional equation below pc

Theorem (D. Zémor - 2014)
If p < pc(G(m)) then

p− 2

m
+D(p) = 0.

Where

D(p) = lim sup
r

Ep

(
rankG∗r,1−p − rankGr,p

|Er|

)
.



27Computation of D(p)

By combinatorial arguments, we obtain D(p) as a function of
the subgraphs of G(m).

Theorem (D., Zémor - 2014)
D(p) is equal to

2

m

∑
C∈C(v)

(
1

|V (C)|

(
p|E(C)|(1− p)|∂(C)| − (1− p)|E(C)|p|∂(C)|

))
,

where C(v) denotes the set of connected subgraphs C of G(m)
containing a fixed vertex v.

C = {v} ⇒ 2
m((1− p)5 − p5).

C = {v, w} ⇒ 2
m

1
2(p

1(1− p)8 − p8(1− p)1).



28Numerical results in G(5)
I Simple bounds: 1

m−1
≤ pc ≤ 1− 1

m−1
, thus

0.25 ≤ pc ≤ 0.75

I No-cloning bound (D., Zémor - 2010):

pc ≤ 0.40

I "Monte Carlo upper bound" (Gu, Ziff - 2012):

pc . 0.34

I Matricial bound (D. Zémor - 2013):

pc . 0.38

I Lyons remark: Benjamini, Shramm ’96 + Haggstrom, Jonasson, Lyons ’02

pc . 0.31

I Homological bound (D., Zémor - 2014):

pc ≤ 0.2999...



29Conclusion

Results:
I It is a purely combinatorial application of quantum

information.
I The critical probability is local.
I Feedback on hyperbolic codes: precise upper bound on the

threshold.

Open questions:
I Lower bound on pc.
I Case of non self-dual hyperbolic tilings.
I We conjecture that our homological bound is tight.
I Recover Kesten’s result



30Conclusion

Thank you for your attention!
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