A combinatorial application of quantum information in percolation theory

Nicolas Delfosse - Université de Sherbrooke joint work with Gilles Zémor - Université de Bordeaux http://arxiv.org/abs/1408.4031

QEC14 - December 19, 2014

うして ふゆう ふほう ふほう ふしつ

From percolation to topological codes

- Quantum erasure channel: Each qubit is erased (lost) with probability p, independently.
- Relation with percolation: For Kitaev's toric code, correction of erasures is related with a statistical mechanical model called percolation.
- Application: Apply results from percolation theory to surface codes.
 (Stace, Barrett Doherty - 2009)

From percolation to topological codes

- Quantum erasure channel: Each qubit is erased (lost) with probability p, independently.
- Relation with percolation: For Kitaev's toric code, correction of erasures is related with a statistical mechanical model called percolation.
- Application: Apply results from percolation theory to surface codes. (Stace, Barrett Doherty - 2009)

Goal: derive results in percolation from quantum information.

Overview

Percolation Theory

From percolation to quantum error correction

Three bounds on the threshold

- no-cloning bound
- ▶ LDPC codes bound
- ▶ homological bound

Why percolation?

The melting of ice is a phase transition at the critical point $T = 0^{\circ}C$: There is a discontinuous evolution of macroscopic properties of water.

Question:

How do local interactions between particles induce a global behaviour?

Why percolation? It is perhaps the simplest model which exhibits a phase transition.

Percolation in \mathbb{Z}^2

Each edge is red, independently with probabily p.

Question: is there an infinite red component ?

Percolation in \mathbb{Z}^2

There is a phase transition at p_c :

- if $p < p_c$, there is an infinite red component with proba 0,
- if $p > p_c$, there is an infinite red component with proba 1.

Goal: Determine the value of p_c .

Theorem (H. Kesten, 1980 - conjectured 20 years before) In the square lattice we have: $p_c = 1/2$.

Percolation in hyperbolic lattices

Let G(m) be the *m*-regular planar tiling.

- The exact value of p_c is unknown.
- The numerical estimation of p_c is difficult.

(Benjamini, Schramm, and later Baek, Kim, Minnhagen and Gu, Ziff)

We will use quantum information theory to bound p_c .

From percolation to topological codes

Kitaev's toric codes (Kitaev - 1997)

- ▶ Place a qubit on each edge of a torus.
- This gives a global state $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$ with n = |E|.

The toric code is the ground space of

$$H = -\sum_{v} X_v - \sum_{f} Z_f$$

A problematic erasure

Each qubit is erased (lost), independently, with probability p.

 $\begin{array}{l} \text{Correctable} \Leftrightarrow \text{erased clusters are planar} \\ \Leftrightarrow \text{do not cover homology} \end{array}$

A problematic erasure

Each qubit is erased (lost), independently, with probability p.

 $\begin{array}{l} \text{Correctable} \Leftrightarrow \text{erased clusters are planar} \\ \Leftrightarrow \text{do not cover homology} \end{array}$

For large tilings, we have:

Uncorrectable erasures \approx Infinite clusters in percolation

Threshold for percolation in $\mathbb{Z}^2 \Longrightarrow$ Threshold for toric codes:

▶ $p < p_c \Rightarrow$ the toric code has a good performance (Stace, Barrett Doherty - 2009)

Construction of hyperbolic codes

First step: Relate hyperbolic percolation to topological codes.

Using finite versions of G(m), we can define hyperbolic codes: (Freedman, Meyer, Luo - 2001, Zémor 2009)

Place a qubit on each edge, then

- Plaquette operators X_v correspond to the edges incident to a vertex
- Site operators Z_f correspond to faces.

The hyperbolic code is the ground space of

$$H = -\sum_{v} X_v - \sum_{f} Z_f.$$

A finite hyperbolic tiling of genus 5

13

From percolation to hyperbolic codes

We use quotients of G(m) (Proposed by Siran '01) such that

- $G_r(m)$ is a finite graph
- ▶ G_r(m) locally looks like G(m) (balls of radius r are planar)

Then, for large r, we have:

 $p < p_c(G(m)) \Rightarrow$ hyperbolic codes have a good performance.

Application to percolation • No-cloning bound

Capacity of the quantum erasure channel

What is the highest rate R = k/n with $P_{err} \rightarrow 0$? \longrightarrow It is the capacity of the channel.

Theorem (Bennet, DiVicenzo, Smolin - 97)

The capacity of the quantum erasure channel is 1 - 2p.

Derived from the no-cloning theorem.

A no-cloning upper bound in percolation

Main argument: if
$$p < p_c$$
 then $R = 1 - \frac{4}{m} \le 1 - 2p$

Theorem (D., Zémor - ITW 10)

The critical probability on the graph G(m) satisfies:

$$p_c \le \frac{2}{m}.$$

Easy combinatorial bounds:

$$\frac{1}{m-1} \le p_c \le 1 - \frac{1}{m-1}.$$

Application to percolation

- ▶ No-cloning bound
- ► LDPC bound

Improving the no-cloning bound

- ► The no-cloning bound is tight only if hyperbolic codes achieve capacity.
- ▶ Hyperbolic quantum codes are defined by bounded weight generators. (LDPC).
- ► Classical intuition: Classical LDPC codes cannot achieve the capacity.

Difficulty: the no-cloning bound is not related with the codes.

$$\mathbf{H} = \begin{pmatrix} I & X & Z & Y & Z \\ Z & Z & X & I & Z \\ I & Y & Y & Y & Z \end{pmatrix}$$
$$\mathcal{E} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

• There are 4^2 errors $E \subset \mathcal{E}$

$$\mathbf{H}_{\mathcal{E}} = \begin{pmatrix} I & X & Z & Y & Z \\ Z & Z & X & I & Z \\ I & Y & Y & Y & Z \end{pmatrix}$$
$$\mathcal{E} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

• There are
$$4^2$$
 errors $E \subset \mathcal{E}$

▶ There are 2^2 syndromes of errors $E \subset \mathcal{E}$

$$\mathbf{H}_{\bar{\mathcal{E}}} = \begin{pmatrix} I & X & Z & Y & Z \\ Z & Z & X & I & Z \\ I & Y & Y & Y & Z \end{pmatrix}$$
$$\mathcal{E} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

- There are 4^2 errors $E \subset \mathcal{E}$
- There are 2^2 syndromes of errors $E \subset \mathcal{E}$
- There are 2 equivalent errors included in \mathcal{E} in each coset mod the S.

$$\mathbf{H}_{\bar{\mathcal{E}}} = \begin{pmatrix} I & X & Z & Y & Z \\ Z & Z & X & I & Z \\ I & Y & Y & Y & Z \end{pmatrix}$$
$$\mathcal{E} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

- There are 4^2 errors $E \subset \mathcal{E}$
- There are 2^2 syndromes of errors $E \subset \mathcal{E}$
- There are 2 equivalent errors included in \mathcal{E} in each coset mod the S.
- $\longrightarrow \mathcal{E}$ can not be corrected

$$\mathbf{H}_{\bar{\mathcal{E}}} = \begin{pmatrix} I & X & Z & Y & Z \\ Z & Z & X & I & Z \\ I & Y & Y & Y & Z \end{pmatrix}$$
$$\mathcal{E} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

- There are 4^2 errors $E \subset \mathcal{E}$
- There are 2^2 syndromes of errors $E \subset \mathcal{E}$
- ▶ There are 2 equivalent errors included in \mathcal{E} in each coset mod the S.
- $\longrightarrow \mathcal{E}$ can not be corrected

Lemma

We can correct $2^{\operatorname{rank} \mathbf{H} - (\operatorname{rank} \mathbf{H}_{\bar{\mathcal{E}}} - \operatorname{rank} \mathbf{H}_{\mathcal{E}})}$ errors $E \subset \mathcal{E}$.

Combinatorial version of the no-cloning bound

Let (\mathbf{H}_t) be a sequence of stabilizer matrices of codes of rate R.

Theorem (D., Zémor - QIC 2013) If $P_{err} \to 0$ then $R \leq 1 - 2p - D(p),$ where $D(p) = \limsup_{t} \frac{\mathbb{E}_p[\operatorname{rank} \mathbf{H}_{t,\bar{\mathcal{E}}} - \operatorname{rank} \mathbf{H}_{t,\mathcal{E}}]}{n_t}.$

Corollary: When $p \leq 1/2$, we have $R \leq 1 - 2p$.

Remark: With hyperbolic codes, the matrices \mathbf{H}_t are sparse.

- Typically: $\mathbf{H}_{\mathcal{E}}$ is a $r \times np$ matrix
- ▶ When np = r, the square matrix $\mathbf{H}_{\mathcal{E}}$ has almost full rank $\longrightarrow D(p)$ is close 0.

- Typically: $\mathbf{H}_{\mathcal{E}}$ is a $r \times np$ matrix
- When np = r, the square matrix $\mathbf{H}_{\mathcal{E}}$ has almost full rank $\longrightarrow D(p)$ is close 0.

- Typically: $\mathbf{H}_{\mathcal{E}}$ is a $r \times np$ matrix
- When np = r, the square matrix $\mathbf{H}_{\mathcal{E}}$ has almost full rank $\longrightarrow D(p)$ is close 0.
- ▶ BUT for a sparse matrix **H**, there are αn null rows in **H**_{\mathcal{E}} \longrightarrow Bound on D(p).

- Typically: $\mathbf{H}_{\mathcal{E}}$ is a $r \times np$ matrix
- ▶ When np = r, the square matrix $\mathbf{H}_{\mathcal{E}}$ has almost full rank $\longrightarrow D(p)$ is close 0.
- ▶ BUT for a sparse matrix **H**, there are αn null rows in **H**_{\mathcal{E}} \longrightarrow Bound on D(p).

- Typically: $\mathbf{H}_{\mathcal{E}}$ is a $r \times np$ matrix
- When np = r, the square matrix $\mathbf{H}_{\mathcal{E}}$ has almost full rank $\longrightarrow D(p)$ is close 0.
- BUT for a sparse matrix **H**, there are αn null rows in $\mathbf{H}_{\mathcal{E}}$ \longrightarrow Bound on D(p).
- ► Similarly, there are βn identical rows of weight 1 ... \longrightarrow more accurate bound.

Application to percolation

- ▶ No-cloning bound
- ► LDPC bound
- Homological bound

Goal: Remove the quantumness.

$$H_1(G) = \langle \gamma_{\text{horizontal}}, \gamma_{\text{vertical}} \rangle$$

Intuition: threshold for appearance of homology

Recall that correctable erasure \Leftrightarrow no homology

- Let G_r be the finite version of G(m).
- Let $G_{r,p}$ be a random subgraph of G_r .

Basic idea of our homological bound:

- 1. If $p < p_c$, the dimension of $H_1(G_{r,p})$ is small.
- 2. Compute the expected dimension $\mathbb{E}(\dim H_1(G_{r,p}))$.

Then, if $\mathbb{E}(\dim H_1(G_{r,p}))$ is large, we are beyond p_c .

A functional equation below p_c

Theorem (D. Zémor - 2014)

If $p < p_c(G(m))$ then

$$p - \frac{2}{m} + D(p) = 0.$$

Where

$$D(p) = \limsup_{r} \mathbb{E}_p \left(\frac{\operatorname{rank} G_{r,1-p}^* - \operatorname{rank} G_{r,p}}{|E_r|} \right).$$

Computation of D(p)

By combinatorial arguments, we obtain D(p) as a function of the subgraphs of G(m).

Theorem (D., Zémor - 2014)

D(p) is equal to

$$\frac{2}{m} \sum_{C \in \mathcal{C}(v)} \left(\frac{1}{|V(C)|} \left(p^{|E(C)|} (1-p)^{|\partial(C)|} - (1-p)^{|E(C)|} p^{|\partial(C)|} \right) \right),$$

where C(v) denotes the set of connected subgraphs C of G(m) containing a fixed vertex v.

$$C = \{v\} \Rightarrow \frac{2}{m}((1-p)^5 - p^5).$$

$$C = \{v, w\} \Rightarrow \frac{2}{m} \frac{1}{2}(p^1(1-p)^8 - p^8(1-p)^1).$$

Numerical results in G(5)

• Simple bounds:
$$\frac{1}{m-1} \le p_c \le 1 - \frac{1}{m-1}$$
, thus

 $0.25 \leq p_c \leq 0.75$

 $p_c \le 0.40$

▶ "Monte Carlo upper bound" (Gu, Ziff - 2012):

 $p_c \lesssim 0.34$

Matricial bound (D. Zémor - 2013):

 $p_c \lesssim 0.38$

▶ Lyons remark: Benjamini, Shramm '96 + Haggstrom, Jonasson, Lyons '02

 $p_c \lesssim 0.31$

▶ Homological bound (D., Zémor - 2014):

 $p_c \le 0.2999...$

Conclusion

Results:

- ▶ It is a purely combinatorial application of quantum information.
- The critical probability is local.
- Feedback on hyperbolic codes: precise upper bound on the threshold.

Open questions:

- Lower bound on p_c .
- Case of non self-dual hyperbolic tilings.
- ▶ We conjecture that our homological bound is tight.
- Recover Kesten's result

Conclusion

Thank you for your attention!