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From percolation to topological codes

» Quantum erasure channel: Each qubit is erased (lost) with
probability p, independently.

» Relation with percolation: For Kitaev’s toric code,
correction of erasures is related with a statistical
mechanical model called percolation.

» Application: Apply results from percolation theory to
surface codes.
(Stace, Barrett Doherty - 2009)
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Goal: derive results in percolation from quantum information.



Overview

Percolation Theory

From percolation to quantum error correction

Three bounds on the threshold

» no-cloning bound
» LDPC codes bound

» homological bound



Why percolation?

The melting of ice is a phase transition at the critical point
T = 0°C": There is a discontinuous evolution of macroscopic
properties of water.

Question:
How do local interactions between particles induce a global

behaviour?

Why percolation? It is perhaps the simplest model which
exhibits a phase transition.



Ut

Percolation in Z2

Each edge is red, independantly with probabily p.

Question: is there an infinite red component ?



Percolation in Z2

There is a phase transition at p.:
» if p < p., there is an infinite red component with proba 0,

» if p > p., there is an infinite red component with proba 1.

Goal: Determine the value of p..

Theorem (H. Kesten, 1980 - conjectured 20 years before)

In the square lattice we have: p. = 1/2.




Percolation in hyperbolic lattices

Let G(m) be the m-regular planar tiling.

» The exact value of p. is
unknown.

» The numerical estimation of p,
is difficult.

(Benjamini, Schramm, and later

Baek, Kim, Minnhagen and Gu,
Ziff)

We will use quantum information theory to bound p..



From percolation to topological
codes




Kitaev’s toric codes (Kitaev - 1997)
» Place a qubit on each edge of a torus.
» This gives a global state |¢) € (C%)®" with n = |E].

site operator X, =

NS
™

face operator Zy =

\N

NS
N

The toric code is the ground space of

H——ZXU—;Zf

\N



A problematic erasure

Each qubit is erased (lost), independently, with probability p.

Correctable < erased clusters are planar

< do not cover homology
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From percolation to toric codes

For large tilings, we have:

Uncorrectable erasures & Infinite clusters in percolation

Threshold for percolation in Z? = Threshold for toric codes:

> p < p. = the toric code has a good performance
(Stace, Barrett Doherty - 2009)
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Construction of hyperbolic codes
First step: Relate hyperbolic percolation to topological codes.

Using finite versions of G(m), we can define hyperbolic codes:
(Freedman, Meyer, Luo - 2001, Zémor 2009)

Place a qubit on each edge, then

» Plaquette operators X,
correspond to the edges
incident to a vertex

» Site operators Zy correspond
to faces.

The hyperbolic code is the ground space of

H:—va—ZZf.
v f



A finite hyperbolic tiling of genus 5
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From percolation to hyperbolic codes

We use quotients of G(m) (Proposed by Siran ’01) such that
» G(m) is a finite graph
» G(m) locally looks like G(m)
(balls of radius r are planar)

Then, for large r, we have:

p < pe(G(m)) = hyperbolic codes have a good performance.
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Application to percolation

» No-cloning bound




Capacity of the quantum erasure channel 16

k qubits n qubits n qubits k qubits

2 —[Bucoding]- x [l ] —|Decading]— m

What is the highest rate R = k/n with P, — 07
— It is the capacity of the channel.

Theorem (Bennet, DiVicenzo, Smolin - 97)

The capacity of the quantum erasure channel is 1 — 2p.

Derived from the no-cloning theorem.



A no-cloning upper bound in percolation

Main argument: if p < p. then R =1 — % <1-2p

Theorem (D., Zémor - ITW 10)

The critical probability on the graph G(m) satisfies:

2

De < —.
m

Easy combinatorial bounds:

1
<p.<1——n-.
m—l_pC m—1
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Application to percolation

» No-cloning bound
» LDPC bound
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Improving the no-cloning bound

» The no-cloning bound is tight only if hyperbolic codes
achieve capacity.

» Hyperbolic quantum codes are defined by bounded weight
generators. (LDPC).

» Classical intuition: Classical LDPC codes cannot achieve
the capacity.

Difficulty: the no-cloning bound is not related with the codes.
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A combinatorial bound
I X ZY
H=|\7Z7 7 X 1|
I ' Y'Y Y
1 1 0

» There are 42 errors E C £

VA
VA
VA

0

)
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A combinatorial bound

He =

— <N
~ <N

E= (0 0 0)
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» There are 22 syndromes of errors E C &
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A combinatorial bound 20

H; =

~ N~
o <K~ K
N NN

E= (0 1 1

@)
Nt

» There are 42 errors E C £
» There are 22 syndromes of errors E C £

» There are 2 equivalent errors included in £ in each coset
mod the S.

— & can not be corrected

We can correct 2tankH—(rankHg—rankHe) oppors | €.




Combinatorial version of the no-cloning bound 21

Let (H;) be a sequence of stabilizer matrices of codes of rate R.

Theorem (D., Zémor - QIC 2013)

If P, — 0 then

where frank ; ]
E,[rank H, s — rank H
D(p) = limsup P Le L
t ny

Corollary: When p < 1/2, we have R < 1 — 2p.

Remark: With hyperbolic codes, the matrices H; are sparse.



Rank of a random sparse matrix

——

pn columns

» Typically: He is a r x np matrix
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Rank of a random sparse matrix

A X Z

pn columns
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Rank of a random sparse matrix

A X Z

pn columns

v

Typically: He is a 7 X np matrix

v

When np = r, the square matrix He has almost full rank
— D(p) is close 0.

» BUT for a sparse matrix H, there are an null rows in H¢
— Bound on D(p).

v

Similarly, there are 8n identical rows of weight 1 ...
— more accurate bound.
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Application to percolation

» No-cloning bound
» LDPC bound

» Homological bound
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Homology of the torus

Goal: Remove the quantumness.

H,(G) = Homology group = cycles up to faces.
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Homology of the torus

Goal: Remove the quantumness.

H,(G) = Homology group = cycles up to faces.

H,y (G) = <'Yhorizontab 'Yvertical>
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Intuition: threshold for appearance of homology

Recall that correctable erasure < no homology

» Let G, be the finite version of G(m).
» Let G)p, be a random subgraph of G

Basic idea of our homological bound:
1. If p < pe, the dimension of Hi(G,.p) is small.
2. Compute the expected dimension E(dim H1 (G, p)).

Then, if E(dim H;(G,.p)) is large, we are beyond pe.



A functional equation below p,

Theorem (D. Zémor - 2014)

If p < pc(G(m)) then

2
p——+D(p)=0.
m
Where
. rank Gy ,_, — rank G p
D(p) = limsupE, : B,
T T

).
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Computation of D(p)

By combinatorial arguments, we obtain D(p) as a function of
the subgraphs of G(m).

Theorem (D., Zémor - 2014)

D(p) is equal to

2 1
2 @) (] — )OO _ (1 — ) EC)],0(C)]
mcg)(\v(c)l (p (1-p) (1-p)!#lp ))

where C(v) denotes the set of connected subgraphs C' of G(m)
containing a fized vertex v.

C={v} = Z((1 -p)°—p°.
C={v,w}= 25p"(1—p)?®-p*(1—p)).
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Numerical results in G(5)
» Simple bounds: ﬁ <pe<1-— ﬁ, thus

0.25 < p. <0.75
» No-cloning bound (D., Zémor - 2010):
pe < 0.40
»> "Monte Carlo upper bound" (Gu, Ziff - 2012):
pe $0.34
> Matricial bound (D. Zémor - 2013):
pe S 0.38
» Lyons remark: Benjamini, Shramm ’96 + Haggstrom, Jonasson, Lyons ’02
pe $0.31

»> Homological bound (D., Zémor - 2014):

pe < 0.2999...
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Conclusion

Results:

» [t is a purely combinatorial application of quantum
information.

» The critical probability is local.

» Feedback on hyperbolic codes: precise upper bound on the
threshold.

Open questions:
» Lower bound on p..
» Case of non self-dual hyperbolic tilings.
» We conjecture that our homological bound is tight.

» Recover Kesten’s result
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Conclusion

Thank you for your attention!
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