Finite Length — The Final Frontier

Ruediger Urbanke

Based on joint work with Hamed Hassani and Marco Mondelli.

December 17th, 2014

Error Exponent

Error Floor

Polar [Arikan 2007]

capacity achieving on BMS channels very elegant and short proof efficient construction low complexity (log(n) operations per bit) low error floors predictable performance many applications

not universal large blocklengths needed

Spatially Coupled Codes [Felstroem and Zigangirov 99, Convolutional LDPC Codes]

capacity achieving on BMS channels proof [Kudekar, Richardson, U., 2012] low complexity (constant per bit) low error floors universal many applications

proof more involved no simple bounds for finite lengths

Spatially Coupled Codes [Felstroem and Zigangirov 99, Convolutional LDPC Codes]

capacity achieving on BMS channels proof [Kudekar, Richardson, U., 2012] low complexity (constant per bit) low error floors universal many applications

proof more involved no simple bounds for finite lengths

Spatially Coupled Codes [Felstroem and Zigangirov 99, Convolutional LDPC Codes]

capacity achieving on BMS channels proof [Kudekar, Richardson, U., 2012] low complexity (constant per bit) low error floors universal many applications

proof more involved no simple bounds for finite lengths

Showdown

Showdown

Summary

	optimal	Polar	Spatially Coupled
error exponent	$e^{-NE(R,W)}$	$2^{-\sqrt{N}2^{\frac{\sqrt{\log_2 N}}{2}Q^{-1}(\frac{R}{I(W)})}}$	$e^{-NG(R,W)}$
scaling	$N \text{ is } \Theta(\frac{1}{(I(W) - R)^2})$	N is $\Theta(\frac{1}{(I(W) - R)^{\mu}})$ 3.579 $\leq \mu \leq 4.714$	$N \text{ is } \Theta(\frac{1}{(I(W) - R)^3})$
error floor	$P(W) \le P(W')^{\frac{F(W)}{F(W')}}$	$P(W) \le P(W')^{\frac{\log Z(W)}{\log Z(W')}}$	$P(W) \le P(W')^{\frac{G(W)}{G(W')}}$

Error Exponent

Error Exponent of Polar Codes

$$\lim_{n \to \infty} P\{Z_n \le 2^{-\sqrt{N}2^{\frac{1}{2}\sqrt{\log_2 N}Q^{-1}(\frac{R}{I(W)})}}\} = R < I(W)$$

[Arikan, Telatar 2009]

[Hassani, Mori, Tanaka, U. 2011]

Error Exponent of SC Codes

$P\{|P_N(G,\epsilon,\ell) - E[P_N(G,\epsilon,\ell)]| \ge \delta\} \le e^{-\alpha N}$

- G graph
- ϵ channel parameter
- ℓ # of iterations

Error Exponent of SC Codes

$P\{|P_N(G,\epsilon,\ell) - E[P_N(G,\epsilon,\ell)]| \ge \delta\} \le e^{-\alpha N}$

- G graph ϵ channel parameter
- ℓ # of iterations

If $E[P_N(G, \epsilon, \ell)]$ converges to zero for large ℓ and if code has error correcting radius then we can prove that the code has an error exponent under iterative decoding.

Error Exponent of SC Codes

$P\{|P_N(G,\epsilon,\ell) - E[P_N(G,\epsilon,\ell)]| \ge \delta\} \le e^{-\alpha N}$

Ggraph ϵ channel parameter ℓ # of iterations

If $E[P_N(G, \epsilon, \ell)]$ converges to zero for large ℓ and if code has error correcting radius then we can prove that the code has an error exponent under iterative decoding.

simplest sufficient condition: code has expansion at least 3/4 which is true whp if left degree is at least 5; (less restrictive conditions are known but more complicated);

Summary — Error Exponent

	optimal	Polar	Spatially Coupled
error exponent	$e^{-NE(R,W)}$	$2^{-\sqrt{N}2^{\frac{\sqrt{\log_2 N}}{2}Q^{-1}(\frac{R}{I(W)})}}$	$e^{-NG(R,W)}$
scaling	$N \text{ is } \Theta(\frac{1}{(I(W) - R)^2})$	N is $\Theta(\frac{1}{(I(W) - R)^{\mu}})$ 3.579 $\leq \mu \leq 4.714$	$N \text{ is } \Theta(\frac{1}{(I(W) - R)^3})$
error floor	$P(W) \le P(W')^{\frac{F(W)}{F(W')}}$	$P(W) \le P(W')^{\frac{\log Z(W)}{\log Z(W')}}$	$P(W) \le P(W')^{\frac{G(W)}{G(W')}}$

Error Floor

Summary

optimal:
$$P(W) \le P(W')^{\frac{F(W)}{F(W')}}$$

polar:
$$P(W) \le P(W')^{\frac{\log Z(W)}{\log Z(W')}} \quad (BMS: \text{ if } Z(W) \le Z(W')^2)$$

spatially coupled: $P(W) \leq P(W')^{\frac{G(W)}{G(W')}}$

Error Floor of Polar Codes — BEC

Consider a particular synthetic channel +++-++ and two starting values ϵ and $\epsilon' \leq \epsilon$.

Error Floor of Polar Codes – BEC

Consider a particular synthetic channel +++-++ and two starting values ϵ and $\epsilon' \leq \epsilon$.

If $\epsilon' \leq \epsilon^{\gamma}$, then $z_i(\epsilon') \leq z_i(\epsilon)^{\gamma}, i \geq 0.$

Error Floor of Polar Codes – BEC

Consider a particular synthetic channel +++-++ and two starting values ϵ and $\epsilon' \leq \epsilon$.

If $\epsilon' \leq \epsilon^{\gamma}$, then $z_i(\epsilon') \leq z_i(\epsilon)^{\gamma}, i \geq 0.$

Error Floor of Polar Codes — BEC

Consider a particular synthetic channel +++-++ and two starting values ϵ and $\epsilon' \leq \epsilon$.

If $\epsilon' \leq \epsilon^{\gamma}$, then $z_i(\epsilon') \leq z_i(\epsilon)^{\gamma}, i \geq 0.$

Hence, if $\tilde{P}(\epsilon) = \sum_{b \in \mathcal{I}} z^{(b)}(\epsilon)$, then $\tilde{P}(\epsilon') \leq \tilde{P}(\epsilon)^{\frac{\log(\epsilon')}{\log(\epsilon)}}$

Summary — Error Floor

	optimal	Polar	Spatially Coupled
error exponent	$e^{-NE(R,W)}$	$2^{-\sqrt{N}2^{\frac{\sqrt{\log_2 N}}{2}Q^{-1}(\frac{R}{I(W)})}}$	$e^{-NG(R,W)}$
scaling	$N \text{ is } \Theta(\frac{1}{(I(W) - R)^2})$	N is $\Theta(\frac{1}{(I(W) - R)^{\mu}})$ 3.579 $\leq \mu \leq 4.714$	N is $\Theta(\frac{1}{(I(W) - R)^3})$
error floor	$P(W) \le P(W')^{\frac{F(W)}{F(W')}}$	$P(W) \le P(W')^{\frac{\log Z(W)}{\log Z(W')}}$	$P(W) \le P(W')^{\frac{G(W)}{G(W')}}$

Scaling Exponent μ

Scaling Exponent μ

Gedankenexperiment -- BEC

Gedankenexperiment -- BEC

Gedankenexperiment -- BEC

Scaling of Block Codes under MAP -- BEC

random linear block codes are almost perfect

1	00101010001
	01110010010
	10101010101
	01000101001
	01011100010

square binary random matrix of dimension n

Scaling of Block Codes under MAP -- BEC

random linear block codes are almost perfect

probability that full rank

$$\prod_{i=0}^{n-1} \frac{2^n - 2^i}{2^n} = \prod_{i=0}^{n-1} (1 - 2^{i-n}) \stackrel{n \to \infty}{\to} 0.28878809508\dots$$

Scaling of Block Codes under MAP -- BEC

random linear block codes are almost perfect

hence for random linear block codes the transition is of constant (on an absolute scale) width

Scaling of Optimal Codes

$$N \text{ is } \Theta(\frac{1}{(I(W) - R)^2})$$

[Strassen 1962]

[Polyanskiy, Poor, Verdú 2009]

$$N \text{ is } \Theta(\frac{1}{(I(W) - R)^{\mu}})$$

 $3.579 \le \mu \le 6$ for any BMS channel

[Hassani, Alishahi, U. 2013]

 $\mu \leq 5.702$ for any BMS channel

[Goldin, Burshtein 2013]

BEC:

Assume h(x) is s.t. h(0) = h(1) = 0, h(x) > 0 for $x \in (0, 1)$, and

$$\sup_{x \in (0,1)} \frac{h(x^2) + h(2x - x^2)}{2h(x)} < 2^{-1/\mu^*}$$

Then, $\mu \leq \mu^*$. The value $\mu^* = 3.635$ is achievable.

BMSC:

Assume h(x) is s.t. h(0) = h(1) = 0, h(x) > 0 for $x \in (0, 1)$, and

$$\sup_{x \in (0,1), y \in [x\sqrt{2-x^2}, 2x-x^2]} \frac{h(x^2) + h(y)}{2h(x)} < 2^{-1/\mu^*}$$

Then, $\mu \leq \mu^*$. The value $\mu^* = 4.71$ is achievable.

[Hassani, Mondelli, U. 2014]

Assume
$$h(x)$$
 is s.t. $h(0) = h(1) = 0$,
 $h(x) > 0$ for $x \in (0, 1)$, and

$$\sup_{x \in (0,1)} \frac{h(x^2) + h(2x - x^2)}{2h(x)} < 2^{-1/\mu^*}$$

Then, $\mu \leq \mu^*$. The value $\mu^* = 3.635$ is achievable.

Assume
$$h(x)$$
 is s.t. $h(0) = h(1) = 0$,
 $h(x) > 0$ for $x \in (0, 1)$, and

$$\sup_{x \in (0,1)} \frac{h(x^2) + h(2x - x^2)}{2h(x)} < 2^{-1/\mu^*}$$

Then, $\mu \leq \mu^*$. The value $\mu^* = 3.635$ is achievable.

Assume
$$h(x)$$
 is s.t. $h(0) = h(1) = 0$,
 $h(x) > 0$ for $x \in (0, 1)$, and

$$\sup_{x \in (0,1)} \frac{h(x^2) + h(2x - x^2)}{2h(x)} < 2^{-1/\mu^*}$$

Then, $\mu \leq \mu^*$. The value $\mu^* = 3.635$ is achievable.

W

(dı, dr, w, L)

N=L M

 $P_N \sim L \sqrt{M} e^{-\alpha \delta^2 M}$ loss due to scaling

 $P_N \sim L \sqrt{M} e^{-\alpha \delta^2 M}$

loss due to scaling

N=L M

$$P_N \sim L\sqrt{M}e^{-\alpha\delta^2 M}$$
$$R = R_{des} - \frac{1}{L}$$

loss due to scaling loss due boundary

N=L M

$$P_N \sim L\sqrt{M}e^{-\alpha\delta^2 M}$$
$$R = R_{des} - \frac{1}{L}$$

loss due to scaling loss due boundary $\delta = \frac{\beta}{\sqrt{M}}$

gap to capacity = $\delta + \frac{1}{L} = \frac{1}{\sqrt{M}} + \frac{1}{L} = N^{-\frac{1}{3}}$

Summary — Scaling Exponent

	optimal	Polar	Spatially Coupled
error exponent	$e^{-NE(R,W)}$	$2^{-\sqrt{N}2^{\frac{\sqrt{\log_2 N}}{2}Q^{-1}(\frac{R}{I(W)})}}$	$e^{-NG(R,W)}$
scaling	$N \text{ is } \Theta(\frac{1}{(I(W) - R)^2})$	N is $\Theta(\frac{1}{(I(W) - R)^{\mu}})$ 3.579 $\leq \mu \leq 4.714$	$N \text{ is } \Theta(\frac{1}{(I(W) - R)^3})$
error floor	$P(W) \le P(W')^{\frac{F(W)}{F(W')}}$	$P(W) \le P(W')^{\frac{\log Z(W)}{\log Z(W')}}$	$P(W) \le P(W')^{\frac{G(W)}{G(W')}}$

