Maximum Likelihood Decoding in the Surface Code

Sergey Bravyi

IBM Watson Research Center

SB, Suchara, and Vargo arXiv:1405.4883 QEC 2014, December 16, 2014

Motivation

Large-scale quantum computing is likely to require active error correction

Timely problem: develop efficient algorithms for the optimal quantum error correction with the surface code

Our approach: use tensor network contraction algorithms

Outline

- Quantum error correction and surface codes
- Minimum weight matching decoder
- Maximum likelihood decoder (MLD)
- Approximate linear-time algorithm for MLD
- Exact quadratic-time algorithm for MLD

Quantum Error Correction

Encoding: embed a logical qubit into a two-dimensional codespace C of n physical qubits

Stabilizer (additive) codes

The code is defined by parity check operators S_a called stabilizers:

 $S_a \psi = \psi$ check passed $S_a \psi = -\psi$ check failed

Codespace: $C = \{ \psi \in (\mathbb{C}^2)^{\otimes n} : S_a \psi = \psi \text{ for all } a \}$

All stabilizers S_a are multi-qubit Pauli operators Stabilizers must pairwise commute, $S_a S_b = S_b S_a$

Decoding: syndrome measurement + recovery

Decoding succeeds iff the recovery differs from the actual error by a product of stabilizers

Surface codes

Physical qubits live at edges of the 2D square lattice

Kitaev (1997) SB and Kitaev (1998) Freedman and Meyer (1998)

Surface codes

Physical qubits live at edges of the 2D square lattice

Kitaev (1997) SB and Kitaev (1998) Freedman and Meyer (1998)

Surface code: errors vs syndromes

Surface code: errors vs syndromes

Depolarizing i.i.d. noise:

$$Pr(X) = Pr(Y) = Pr(Z) = \epsilon/3$$

$$\Pr(I) = 1 - \epsilon$$

ϵ - error rate

Syndromes are measured perfectly

Decoding problem

Given error syndrome, guess which error has created it (modulo stabilizers)

Decoding problem

Given error syndrome, guess which error has created it (modulo stabilizers)

- 1. Find a minimum weight X-error consistent with site-syndromes.
- 2. Find a minimum weight Z-error consistent with plaquette-syndromes.
- 3. Combine the X-error and the Z-error.

Motivation: for small error rate the actual error is likely to be among minimum weight errors consistent with the observed syndrome

Dennis, Kitaev, Landahl, Preskill (2001) Wang, Fowler, Hollenberg (2011)

- 1. Find a minimum weight X-error consistent with site-syndromes.
- 2. Find a minimum weight Z-error consistent with plaquette-syndromes.
- 3. Combine the X-error and the Z-error.

- 1. Find a minimum weight X-error consistent with site-syndromes.
- 2. Find a minimum weight Z-error consistent with plaquette-syndromes.
- 3. Combine the X-error and the Z-error.

- 1. Find a minimum weight X-error consistent with site-syndromes.
- 2. Find a minimum weight Z-error consistent with plaquette-syndromes.
- 3. Combine the X-error and the Z-error.

Step 2.

- 1. Find a minimum weight X-error consistent with site-syndromes.
- 2. Find a minimum weight Z-error consistent with plaquette-syndromes.
- 3. Combine the X-error and the Z-error.

Complexity Worst-case running time: $O(n^3)$ Edmonds (1965) Gabov (1973) Average-case running time: O(n)Fowler, Whiteside, Hollenberg (2012)

Dennis, Kitaev, Landahl, Preskill (2001) Wang, Fowler, Hollenberg (2011)

Why minimum matching is not good enough?

Why Minimum Weight Matching is not good enough?

1. Minimum weight matching \neq minimum weight error

Why Minimum Weight Matching is not good enough?

B and C have the same action on any encoded state.

It does not matter whether we choose B or C as a correction.

B and C have the same action on any encoded state

Pr(B or C) = 2Pr(A)

Picking B or C is twice as likely to correct the error than picking A.

error C

Why Minimum Weight Matching is not good enough?

1. Minimum weight matching \neq minimum weight error

2. MWM fails to account equivalence between errors.

Beyond MWM: previous work

deterministic algorithms	randomized algorithms
Stace and Barrett, PRA 81, 022317 (2010) Tweak the weights in the MWM to favor chains with high entropy	Use Metropolis-type algorithms to sample errors conditioned on the observed syndrome.
Fowler, arXiv:1310.0863 X-MWM, update weights, Z-MWM	Wootton and Loss, PRL 109 160503 (2012) Parallel tempering
Duclos-Cianci and Poulin, PRL 104 050504 (2010) RG decoder: approximate surface code by a concatenated code.	Hutter, Wootton and Loss, PRA 89 022326 (2014) Faster heuristic version

Imagine unlimited computational power.

What decoding algorithm would we use ?

Some terminology:

 $\{I, X, Y, Z\}^{\otimes n}$

cosets of the stabilizer group

Errors in the same coset have the same action on the codespace

Errors in the same coset have the same syndrome

The four cosets consistent with the syndrome s:

We fixed some canonical error f(s) consistent with s

$$\overline{X}$$
 , \overline{Y} , \overline{Z} are the logical operators

The four cosets consistent with the syndrome s:

Coset probability:
$$\Pr(fG) = \sum_{g \in G} \Pr(fg)$$

The four cosets consistent with the syndrome s:

All errors in the same coset have the same action on the codespace

The optimal decoding strategy is to pick the most likely coset.

Maximum Likelihood Decoder (MLD)

Input: syndrome s
Output: Pauli operator g consistent with s
which is most likely to correct the error

- 1. Compute Pr(C) for the four cosets C consistent with the syndrome s.
- 2. $C^* \leftarrow \arg \max_{C} \Pr(C)$
- 3. Return any $g \in C^*$

Dennis, Kitaev, Landahl, Preskill (2001) Poulin (2006) Approximate algorithm for MLD:

Step 1: express the coset probability as a contraction of a tensor network on a 2D grid.

Step 2: contract the network column by column using matrix product states

Illustrative example: the trivial coset

$$\Pr(G) = \sum_{g \in G} \Pr(g)$$

Tanner graph

Nodes = tensors

Edges = tensor indexes (0 or 1)

Approximate contraction of 2D tensor networks Murg, Verstraete, Cirac PRA 75, 033605 (2007)

Think of the contraction as a sequence of N-qubit states:

 $\Pr(G) = \langle \Psi_3 | \Psi_4 \rangle$

Approximate contraction of 2D tensor networks Murg, Verstraete, Cirac PRA 75, 033605 (2007)

Think of the contraction as a sequence of N-qubit states:

Let's hope that the time evolution is weakly-entangling. Approximate Ψ 's by matrix product states with a small bond dimension.

Matrix Product States (MPS)

$$\langle i_1 i_2 i_3 i_4 i_5 |\Psi\rangle =$$

χ - bond dimension

MPS admits a concise description as a list of matrices $(N\chi^2 \text{ real parameters})$

Matrix Product States (MPS)

$$\langle i_1 i_2 i_3 i_4 i_5 |\Psi\rangle =$$

Fact 1: Suppose $\Psi, \Phi \in MPS(N, \chi)$. Then the inner product $\langle \Psi | \Phi \rangle$ can be computed in time $O(N\chi^3)$

MPS compression

Efficient compression algorithm: Schollwock, Ann. Phys. 326, 96 (2011)

Fact 2: MPS with a bond dimension 2χ can be approximated by an MPS with a bond dimension χ in time

$$N \cdot \operatorname{svd}(2\chi) + N \cdot \operatorname{qr}(2\chi) = O(N\chi^3)$$

 Ψ_0

 Ψ_1

L

 $MPS_0 \\ \chi = 2$

 $MPS_0 \\ \chi = 2$

 Ψ_0

 Ψ_3

 Ψ_4

 $\begin{array}{ll} MPS_0 & MPS_1 \\ \chi = 2 & \chi = 4 \end{array}$

bond dimension is too large !

 Ψ_3

bond dimension is too large !

 Ψ_3

Comparison between MPS and MWM decoders

Depolarizing noise, distance d=25

Error rate (%)

MWM threshold: 15%

Theoretical maximum: 18.9% Bombin et al, PRX 2 021004 (2012)

Markov chain algorithm: 16% Hutter et al, PRA 89 022326 (2014)

How good is the approximation?

Example: d=25,
$$\epsilon = 10\%$$

X	$\Pr(G)$	$\Pr(\overline{X}G)$
2	1.11782e-55	2.81823e-89
3	1.11781e-55	2.81777e-89
4	1.11781e-55	2.81781e-89
5	1.11781e-55	2.81781e-89

X-noise:

$$\Pr(X) = \epsilon$$

$$\Pr(I) = 1 - \epsilon$$

$$\Pr(Y) = \Pr(Z) = 0$$

MLD can be implemented exactly in time $O(n^2)$ using a mapping to matchgate quantum circuits

Enables a direct comparison between the MPS-decoder and MLD.

Coset probability for the X-noise:

$$\Pr(fG^X) = \sum_{g \in G^X} \Pr(fg) = \Pr(f) \sum_{g \in G^X} \prod_{e \in g} w_e$$

 G^X - subgroup generated by plaquette stabilizers

$$f$$
 - Pauli operator of X-type

Edge weights:
$$w_e = \begin{cases} \frac{\varepsilon}{1-\varepsilon} & \text{if } e \notin f \\ \frac{1-\varepsilon}{\varepsilon} & \text{if } e \in f \end{cases}$$

Reduction to a quantum circuit simulation

$$\Pr(fG^{X}) = \Pr(f)\langle \psi_{0}|U|\psi_{0}\rangle$$
$$|\psi_{0}\rangle = \sum_{even \, x} |x\rangle \in (\mathbf{C}^{2})^{\otimes d}$$

$$\psi_0 \rightarrow \psi_1 \rightarrow \psi_2 \rightarrow \psi_3 \rightarrow \psi_4 \rightarrow \psi_5$$

Key insight: ψ_i are fermionic Gaussian states.

$$\psi = gauss(\Gamma, M)$$

 $\Gamma = \langle \psi | \psi \rangle$ - norm

 $M = 2d \times 2d$ - covariance matrix

Initial state:

$$|\psi_0\rangle = \sum_{even x} |x\rangle = \text{gauss}(\Gamma_0, M_0)$$

 $\Gamma_0 = 2^{d-1}$

 $\Gamma_1 = \Gamma_0 \sqrt{\det(M_0 + A)}$ $M_1 = A - B(M_0 + A)^{-1}B$

$$B = diag(s_1, s_1, \dots, s_3, s_3)$$

$$t = \frac{1 - w^2}{1 + w^2}$$

$$s = \frac{2w}{1+w^2}$$

 $\Gamma_2 = \Gamma_1 \sqrt{\det(M_1 + A)}$ $M_2 = A - B(M_1 + A)^{-1}B$

$$B = diag(1, t_1, t_1, t_2, t_3, 1)$$

$$t = \frac{1 - w^2}{1 + w^2}$$

$$s = \frac{2w}{1+w^2}$$

Last step: compute inner product between two Gaussian states $\psi_0 = \text{gauss}(\Gamma_0, M_0)$ and $\psi_5 = \text{gauss}(\Gamma_5, M_5)$

$$\Pr(fG^{X}) = \Pr(f) \langle \psi_{5} | \psi_{0} \rangle$$
$$= \Pr(f) \frac{\sqrt{\Gamma_{0}\Gamma_{5}}}{2^{d/2}} \det(M_{0} + M_{5})^{1/4}$$

Overall time complexity: $(2d - 1) \times O(d^3) = O(n^2)$

Comparison between MLD, MPS and MWM decoders

X-noise, distance d=25

Logical error probability

Open problems

- Does the MPS decoder with $\chi = O(1)$ have a non-zero threshold ?
- Exploit parallel algorithms for 2D tensor network contraction to get a running time $poly(\chi) \log(n)$ Evenbly and Vidal, arXiv:1412.0732
- What is the analogue of the ML decoder for non-stabilizer codes/non-Pauli error models ?
- Generalize decoders based on TN contraction to the noisy syndrome readout