
Sparse Quantum Codes from Quantum Circuits

Steve Flammia

QEC 2014

15 December 2014


ETH Zürich

Joint work with 

D Bacon, A W Harrow, and J Shi

arxiv:1411.3334



Quantum Error Correction

Quantum error correction allows us to deal with the 
inevitable presence of noise in a quantum computation 
Most quantum codes are stabilizer codes. 
Ex: n=4 code that detects any single-qubit Pauli error

4 qubits:

Stabilizers: Logical qubits:

L1
X =

X X
I I

L1
Z =

Z I
Z I

L2
X =

X I
X I

L2
Z =

Z Z
I I

SX =
X X
X X

SZ =
Z Z
Z Z



Subsystem Codes

Use excess logical qubits as “gauge’’, and correct errors 
only up to transformations on this gauge space. 
Subsystem codes can be sparser, implying simpler 
syndrome measurements, higher thresholds (sometimes)

4 qubits:

LX =
X X
I I

LZ =
Z I
Z I

G1
X =

X I
X I

G1
Z =

Z Z
I I

G2
X =

I X
I X

G2
Z =

I I
Z Z

Gauge: Logical:

SX = G1
XG2

X

SZ = G1
ZG

2
Z



Code is defined by a set of 
gauge generators 
Center Z(G) of the gauge 
group is the stabilizer group 
(for a choice of signs) 
Logical operators commute 
with G and permute the code 
space (normalizer N(G)) 
Bare logical operators act 
trivially on the gauge qubits; 
dressed ones act nontrivially 

The Structure of Subsystem Codes

Poulin 2005

Gauge 
generators 

XG, ZG

Logical 
generators 

XL, ZL

Stabilizer 
generators 

Sj

Elementary 
errors 

Ej

*diagram not to scale
set of n-qubit  
Pauli operators



Sparse Codes

A code family is called [n,k,d] if it encodes k logical qubits 
into n physical qubits and can detect any Pauli error of 
weight < d. 
A code with a given set of gauge generators is called     
s-sparse if: 

every gauge generator has weight ≤ s 
every physical qubit is acted on nontrivially by ≤ s 
gauge generators. 
ex: row- and column-sparse parity-check matrix 

A code is called just sparse if s = O(1), independent of n



Only at most s qubits need to be measured at a time, 
instead of O(n) 
==> higher thresholds, parallelized architectures, 
simpler decoding algorithms, FTQC with low overhead

Ex: topological codes; LDPC codes 

toric code, color codes,  
hypergraph product codes, … 

A major challenge is to find sparse  
quantum codes that perform well,  
e.g. with k, d = O(n) and fast decoders

The Importance of Sparse Codes

Gallager 1962, MacKay & Neal 1995, Kitaev 2003, Dennis et al. 2001, Raussendorf & Harrington 2007, 
Tillich & Zémor 2009, Kovalev & Pryadko 2013, Bravyi & Hastings 2013, Gottesman 2013, …



Theorem 1. Given any [n0, k0, d0] quantum stabilizer code with stabilizer gen-

erators of weight w1, . . . , wn0�k0 , there is an associated [n, k, d] quantum subsys-

tem code whose gauge generators have weight O(1) and where k = k0, d = d0,
and n = O(n0 +

P
i wi). This mapping is constructive given the stabilizer gen-

erators of the base code.

Main Result

A systematic way to convert any stabilizer code into a 
sparse subsystem code with the same k and d parameters

The price is an increase in the number of physical qubits 
equal to the sum of the original generator weights

The proof is hard, but the construction itself is quite simple



From Codes to Circuits to Codes Again…

Begin with a stabilizer 
code of your choice 
Write a quantum circuit for 
measuring the stabilizers 
of this code.

h0| |0i

11          1
00          0

ZZ

time

ancilla 
preparation

postselected 
measurement

data  
input



From Codes to Circuits to Codes Again…

Begin with a stabilizer 
code of your choice 
Write a quantum circuit for 
measuring the stabilizers 
of this code. 
Turn the circuit elements 
into input/output qubits h0| |0i

11          1
00          0

ZZ



From Codes to Circuits to Codes Again…

Begin with a stabilizer 
code of your choice 
Write a quantum circuit for 
measuring the stabilizers 
of this code. 
Turn the circuit elements 
into input/output qubits  
Add gauge generators via 
Pauli circuit identities.

h0| |0i

11          1
00          0

ZZ

h0| |0i

X

I

X

X



From Codes to Circuits to Codes Again…

Begin with a stabilizer 
code of your choice 
Write a quantum circuit for 
measuring the stabilizers 
of this code. 
Turn the circuit elements 
into input/output qubits  
Add gauge generators via 
Pauli circuit identities.

h0| |0i

11          1
00          0

ZZ

h0| |0iX

I

X

I



From Codes to Circuits to Codes Again…

Begin with a stabilizer 
code of your choice 
Write a quantum circuit for 
measuring the stabilizers 
of this code. 
Turn the circuit elements 
into input/output qubits  
Add gauge generators via 
Pauli circuit identities.

h0| |0i

11          1
00          0

ZZ

h0| |0iI

ZZ

I



From Codes to Circuits to Codes Again…

Begin with a stabilizer 
code of your choice 
Write a quantum circuit for 
measuring the stabilizers 
of this code. 
Turn the circuit elements 
into input/output qubits  
Add gauge generators via 
Pauli circuit identities.

h0| |0i

11          1
00          0

ZZ

h0| |0i

I

Z Z

Z



From Codes to Circuits to Codes Again…

Begin with a stabilizer 
code of your choice 
Write a quantum circuit for 
measuring the stabilizers 
of this code. 
Turn the circuit elements 
into input/output qubits  
Add gauge generators via 
Pauli circuit identities 
This defines the code

Circuit element Gauge generators

I XX,ZZ

H ZX,XZ

P Y X,ZZ

XX
X I ,

I I
XX , ZZ

I I ,
Z I
ZZ

h0| Z

|0i Z

Bravyi 2011 does something similar with “generalized Bacon-Shor” codes 



Properties of this Construction

Circuits as linear operators 
preserving the code space

h0| |0i

V =

V = |00ih00|+ |11ih11|

C = span
�
{|00i, |11i}

�

V is a good circuit

V †V = ⇧C

General condition: 
V is good iff 



Properties of this Construction

Circuits as linear operators 
preserving the code space 
Gauge equivalence of 
errors: h0| |0i

V =

X X

X X

E

E

Apply gauge operators…

VE = ±VGE



Properties of this Construction

Circuits as linear operators 
preserving the code space 
Gauge equivalence of 
errors:  
Squeegee lemma: using 
gauge operations, we can 
localize errors to the initial 
data qubits

h0| |0iVE = ±VGE



Stabilizer and Logical Operators

Spackling: like squeegee, 
but you leave a residue 
Spackling of logical 
operators gives the new 
logical operators 
Spackling of stabilizers on 
the inputs and ancillas are 
the new stabilizers 
Everything else is gauge or 
detectable error  
…what about distance?

h0| |0i

X

X

*even/odd effect means that 
circuits wires must have odd length

X

X

X

X

X

S =
Z Z Z
Z Z Z
I I I

LX =
X X X
X X X
I X I

LZ =
Z Z Z
I I I
I I I

Sa =
Z Z I
Z I I
Z Z Z



Code Distance and Fault Tolerance

For most syndrome-measurement circuits, the new code 
is uninteresting 
If we use a fault-tolerant circuit then we preserve the 
code distance 
Fault tolerance: for every error pattern E, either VE = 0 or 
there exists E’ on inputs s.t. V E’=VE and |E’|≤|E| 
Strange constraints: 

Circuit must be Clifford (so no majority vote) 
No classical feedback or post-processing allowed 
However, we only need to detect errors



Fault-Tolerant Gadgets

Use modified Shor/
DiVincenzo cat states

Build a cat, and postselect 
…not fault tolerant 
Redeem this idea by 
coupling to expanders  
constant-degree 
expanders exist with 
sufficient edge expansion 
to make this fault tolerant

15

9>>>=>>>;
data

block

9>>>=>>>;
cat

block

9>>>=>>>;
parity

block

|{z}
(1)

| {z }
(2)

| {z }
(3)

| {z }
(4)

|{z}
(5)

h+|
h0|
h0|

|+i
|0i
|0i

h0|
h0|
h0|

|0i
|0i
|0i

FIG. 2. Example configuration for the fault-tolerant postselection gadget, for w = 3. The data block
consists of input wires which are postselected to a +1 eigenstate of X⌦w. The cat block is prepared to
contain a cat state, and the parity block is used for parity checks on that cat state.

1. The cat block is initialized to |+i ⌦ |0i⌦|VG|�1. The parity block is initialized to |0i⌦|EG|.

2. CNOTs are performed from the first qubit of the cat block to each of the other cat qubits
in turn; that is

Q
|VG|�t�2

cnot

1,t.

3. Label the first w vertices v
1

, . . . , vw. Then for each i 2 [w] perform CNOTs from cat qubit
vi to data qubit i and to each parity qubit in @vi. Thus each of the first w cat qubits is the
control for d + 1 CNOTs. Since these commute, we perform their product as a single gate
(for each cat qubit).

4. Now undo the CNOTs on the cat block from step 2 by performing them in reverse order.

5. Finally postselect the cat block onto h+|⌦ h0|⌦|VG|�1 and the parity block onto h0|⌦|EG|.

As the name suggests, the operations on the cat block have the e↵ect of preparing the cat state
(|0i⌦|VG| + |1i⌦|VG|)/

p
2 in steps (1-2) and postselecting onto it in steps (4-5).

To analyze the parallel CNOTs in step (3), we consider the |0i⌦|VG| and |1i⌦|VG| branches of the
superposition separately. The |0i⌦|VG| branch is una↵ected by the CNOTs. The |1i⌦|VG| branch has
the a↵ect of applying an X operator to each qubit in the data block and applying

Q
v2VG

Q
e2@v Xe

to the parity block. This latter expression equals the identity, since each edge appears twice in the
product. Thus the state after step (3) is

| i ⌦ |0i⌦|VG| ⌦ |0i⌦|EG| +X⌦w| i ⌦ |1i⌦|VG| ⌦ |0i⌦|EG|
p
2

,

where | i is the initial state of the data qubits. Postselecting the middle qubits onto a cat state
then has the e↵ect of projecting | i onto the +1 eigenspace of X⌦w.



Theorem 1. Given any [n0, k0, d0] quantum stabilizer code with stabilizer gen-

erators of weight w1, . . . , wn0�k0 , there is an associated [n, k, d] quantum subsys-

tem code whose gauge generators have weight O(1) and where k = k0, d = d0,
and n = O(n0 +

P
i wi). This mapping is constructive given the stabilizer gen-

erators of the base code.

Wake Up!

Created sparse subsystem codes with the same k and d 
parameters as the base code 
Used fault-tolerant circuits in a new way, via expanders 
Extra ancillas are required according to the circuit size



Almost “Good” Sparse Subsystem Codes

Start with an [n0,1,d0] random stabilizer code  
(so that d0=O(n0) with high probability) 
Concatenate this m times to get an [nm,1,dm] code 
Sum over the stabilizer weights gives n = nO(m) 
Apply Theorem 1 with m=O(√log n)

0 0

0____

Sparse subsystem codes exist with  
d = O(n1-ε) and ε = O(1/√log n).

____

Best previous distance for sparse codes was  
d = O(√n log n ) by Freedman, Meyer, Luo 2002

______
*Thank you 

 Sergei Bravyi!



Local Subsystem Codes Without Strings

Take the circuit construction from the previous result 
Using SWAP gates and wires, spread the circuit over the 
vertices of a cubic lattice in D dimensions 
Let n=LD be the total number of qubits  
 
 
 

Local subsystem codes exist with  
d = O(LD-1-ε) and ε = O(1/√log n).

____



Compared to Known Bounds

Local subsystem codes in D dimensions  
     d ≤ O(LD-1) 

Our code: d=Ω(LD-1-ε) 
Best known local stabilizer codes: d=O(LD/2) 

Local commuting projector codes  
    kd2/(D-1)≤O(n) 

Our codes: kd2/(D-1)=Ω(n)  
(use the hypergraph product codes and Thm 1)

____
*ε = O(1/√log n) Tillich & Zémor 2009Bravyi, Poulin, Terhal 2010;Bravyi & Terhal 2009;



Local Subsystem Codes Without Strings

Specialize to D=3 
Sparse subsystem code on a lattice with [L3,O(1),L2-ε]  
No strings, either for bare or dressed logical operators 

cf. Bombin’s gauge color codes 
…on the other hand it’s a subsystem code 
How does this compare to other candidate self-
correcting quantum memories? 
 
 

____
*ε = O(1/√log n)



Comparing Candidate Self-Correcting Memories

Code Self-correcting? Comments

3D Bacon-Shor

(Bacon 2005) no No threshold, so no self-

correction (Pastawski et al. 2009)
Welded Code

(Michnicki 2014) no See Brown et al. 2014  

review article for discussion
Cubic Code

(Haah 2011) marginal poly(L) memory lifetime for L< eβ/3


(Bravyi & Haah 2013)
Embedded Fractal Product Codes

(Brell 2014) maybe very large ground-state 

degeneracy?
Gauge Color Codes

(Bombin 2013) ??? Does have a threshold, also has 

string-like dressed operators
This talk 
(BFHS 2014) ??? No strings, concatenated codes 

have a threshold 

Not depicted: Codes with long-range couplings (e.g. several works by the Loss group) or Hamma et al. 2009 
See the talk by Olivier Landon-Cardinal on Friday for more discussion of these types of codes.



Challenges with Gauge Hamiltonians

Gauge Hamiltonians are sometimes gapped:  
(Kitaev 2005; Brell et al. 2011; Bravyi et al. 2013) 

…but sometimes not: 
(Bacon 2005; Dorier, Becca, & Mila 2005) 
The simplest example of our code (a wire) reduces to 
Kitaev’s quantum wire, which is gapped as long as the 
couplings aren’t equal in magnitude 
Our codes are a vast generalization of Kitaev’s wire to 
arbitrary circuits! 
This undoubtedly has a rich phase diagram… might there 
be a gapped self-correcting phase, or something more?

Kitaev 2001;   Lieb, Schultz, & Mattis 1961



Conclusion & Open Questions

Showed a generic way to turn stabilizer codes into sparse 
subsystem codes 
New connection between quantum error correction & 
fault-tolerant quantum circuits 
What are the limits for sparse stabilizer codes? 
Self-correcting memory from the gauge Hamiltonian? 
Efficient, fault-tolerant decoding for these codes? 
Improve the rate? (Bravyi & Hastings 2013) 
Extend these results to allow for subsystem codes? 
See arxiv:1411.3334 for more details!


