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Conclusions m provides optimal controls steering experimental
systems to maximal figure of merit.

m is universal: state-transfer and gate synthesis in
closed or open (bilinear) systems.

m is flexible: combines all state-of-the-art modules.
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B noise-switching plus unitary controls for
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Bilinear Control Systems PRA 84 022305 (2011)

B Many quantum control systems have common form

Basic Systems .

Theory X(t) = —(A+ E U/(t)Bj)X(t)

DYNAMO Platform ]

Algorithmic Concept . s . . . .

X(t): ‘state’, A: drift, B;: control Hamiltonians, u;: control amplitudes

Applications I:

Error Correction

Appllcathns Lk Setting and Task ‘State’ Drift Controls

Fixed-Point X(t A B

Engineering 0 i

Applicatio_ns I_II: closed systems:

Noise Switching pure-state transfer X(t) = |(1) iHo iH;

Conclusions gate synthesis (fixed global phase) X(t) = U(t) /‘.‘;Io II;I/
state transfer X(t) = p(t) iHy iH;
gate synthesis (free global phase) X(t) = U(t) iHy iH;

open systems:

state transfer X(t) = p(t) iHy +T iH;
quantum-map synthesis X(t) = F(t) iHy +T iH;

H is Hamiltonian commutator superoperator (generating U) in Liouville space.
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Decoupling Open Systems

CNQOT plus Decoupling

no relaxation

Typical: system drives outside protected subspace

J. Phys. B 44 (2011) 154013
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Decoupling Open Systems

CNQOT plus Decoupling J. Phys. B 44 (2011) 154013

Typical: system drives outside protected subspace

no relaxation with relaxation (T2, Ty)
1 = If=========t=====
relax.—opt.
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mean of 15 time-optimised pulse sequences

m dissipation affects sequences differently

relaxation-optimised: systematic substantial gain



Control of Non-Markovian Open Systems
Qubit Coupled via Two-Level Fluctuator to Spin Bath

with P. Rebentrost and F. Wilhelm
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Control of Non-Markovian Open Systems
PRL 102 090401 (2009)

B Principle: embed to Markovian and project

po = pse(0) @ pa(0) —2 Oy oty = W(1)po W(2)
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Sum-Up

J. Phys. B 44 154013 (2011)
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Conclusions encoding:

protected subspace big difficult’

"problem roots in finding a viable protected subspace
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asic Systems .
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Fixed-Point centraliser cent(poo) 1= {S|[S, poo] = 0}

Engineering
ates

determine max. abelian subalgebra a of cent(p)

Applicat Iz . . .
Noiss Switching pick translations 7 according to a

Conclusions
translate into Lindblad terms { Vj := oé,k) +i- aé‘k)}
With 7 = om =iopooqgorm=p=xq

ensure uniqueness of p



Fixed-Points |

Graph States, Topol. States

Graph abelian subalgebra a {Vk}
Basic Systems —eo (xz, 2x) Txz Vi=yl+i-zz
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Error Correction Toxz V2 _ 1}/1 +i-zzz
Applications Il: .
Fhed:Pornt Tz Va=Ty+i-12z
Engineering
Ex.: Graph States .
System Algebra A (xzz,zxz, zzX) Txzz Vi=yll+i-zzz
Lie Structure V 1 1 )
T, = i-zzz
Applications IlI: >z 2 i+
Noise Switching Tzzx Va =11y +i.zzz
Conclusions
(xz1z,zxz1,1zxz,212X)  Txz1; Vi=yl11+i-zz1z
Tzxz1 Vo =1y11 +1i. zzz1
T 2xz Vg =11yl +i-1zzz
Toizx Vo=111y +i-z1zz
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Target FP {Tm} {Vik}
BasiciSystems ground state  711_ 1 Vi =ot11..1
Theory +
T1z1..1 Vo =10%1..1 & perms.
DYNAMO Platform .o .
Applications I: .
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Conclusions . o
Dicke state —Tzz..2 Vi=yl1.1+i.-zzz.z
Tzz11.4 = Tiz1z.1 Vo=0tot11.1 —oT1o71..1

T11zz1.1 — T11z1z.1

V3

=1otot11.1 —1ot10t1.1
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Relation to Lie Wedges Rep. Math. Phys. 64 (2009) 93

Consider the Lindblad control system -
Basio Systems p=—((iHo+ o)+ iHu)p  p(0) = po

Theory

DYNAWMO Platform with Hy == 3" ui()H; and To(p) := 3 VipV,) — 3LV Vi, p}+.
Applications I: / k
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Applications Il:
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N The system Lie algebra gs C g, « given as Lie closure

Embedding |

Applications IlI: . o o
Noise Switching gy 1= <(IH0 =+ ro), I"IT,‘ |j = 1, 500 g m>Lie

Conclusions

comprises the Lie wedge wy C gs.



System Algebra of Controlled Markov Maps

Relation to Lie Wedges Rep. Math. Phys. 64 (2009) 93

Consider the Lindblad control system ¥

Basic Systems

Theory ,0 = _((Ii:’O + fo) + /I/:Iu)p p(O) = Po

DYNAMO Platform ith I:I //'\I d F y VT 1 VT v
P — with Hy := XI: ui(t)H; and To(p) := ; kpVi — 2V Vi, p}+.
Error Correction

Applications Il:
Fixed-Point
Engineering . a0 g
CEET The Lindblad-Kossakowski Lie algebra g, x reads
ystem Algebra

Applications IIl: JLK ‘= 9[(b2tN2) s i0

Noise Switching

Embedding Il

Conclusions

with ig ~ RM. It generates a group of affine maps
G :=GL(hetpe) ®s 2 T

embracing the Lie-semigroup of LK-quantum maps T.



Algebraic Structure: 2-Qubit Examples |

Lie Wedges and Embedding in System Algebras

Noise | Lindblad-V ~ Control-H Drift-H dim(gs) dim(tws—toyx)
Basic Systems
Theory unital (y,2)1 x1,1x Z1+1z42z 225 11
DYNAMO Platform
Applications I: e
Error Correction deph. 21 x1 22 6
Applications Il - -~ 1x —— 5 4
Fixed-Point bit-flip x1 x1 _n_ 16 4
Engineering
Ex.: Graph States —— —— 1x o 50 4
System Algebra
Lie Structure .
Applications Il unital (y, 21 x1,1x 2141 2+ Hyxx 205 12
Noise Switching
Conclusions deph. 1 - . 005 6
- - 1x - 225 4
bit-flip x1 x1 —— 124 4
- —= 1x - 225 4




Algebraic Structure: 2-Qubit Examples Il

Lie Wedges and Embedding in System Algebras

AN Noise | Lindblad-V  Control-H Drift-H gs  dim(s—ws)

DYNAMO Platform

. deph. z1,1z su(4) z141z+2z géK 135
Applications I:
Error Correction - z1,1z 5u(2) D 5u(2) _n_ ESK 29
Applications II: —— 21,1z, 2z 5u(2) fey 5u(2) _n_ géK 27
Fixed-Point
Engineering deph. z1,1z x1,1x o QéK 14
Ex.: Graph States
System Algebra
Lie Structure depo|_ iSOz 511(4) o 531(4)+RF 16
Applications IlI: P i . 2 2 o a2 G2V 4RI 7
Noise Switching 15011 su(2) © su(2) s1(2) @ su(2)+
Conclusions amp. +1,1+ 5u(4) o gLK

damp. +1,1+ su(2) @ su(2) —— gtk
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Unified Approach PRA 84 022305 (2011)

X(0)==(A+>_ u(B)X(0)
j
X(t): ‘state’; A: drift; B;: control Hamiltonians; u;: control amplitudes




Bilinear Control Systems
Unified Approach PRA 84 022305 (2011)

Basic Systems X(t) - (A + Z U/(t)Bl) X( t)
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Applications I:
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Applications Il: X(t) A B
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Engineering
closed systems:
Applications IlI: pure-state transfer X(t) = |(t)) iHy iH;
Noise Switching gate synthesis (fixed global phase) X(t) = U(t) iHo iH;
R D B state transfer X(t) = p(t) iHg iH;
:f:vm:f:habmy Theorems gate synthesis (free global phase) X(t) = U(t) iHy iH;
Open vs Closed Loop
Conclusions open systems: N _
state transfer | X(t) = p(t) iHy +T iH;
quantum-map synthesis X(t) = F(t) iHy +T iH;

H is Hamiltonian commutator superoperator (generating U= U(<)UT) in Liouville space.
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Unified Approach

- X(t)=—(A+)_u(hB)X(1)
asic Systems B
Theory J

DYNAMO Platform X(t): ‘state’; A: drift; B;: control Hamiltonians; u;: control amplitudes
Applications I:
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- Setting and Task ‘State’ Drift Controls
Applications Il: X(1) A B
Fixed-Point !
Engineering

closed systems:

Applications Ill: pure-state transfer X(t) = [(t)) iHy iH;
Noise Switching gate synthesis (fixed global phase) X(t) = U(t) iHy iH;
DYNAMO Extension state transfer X(t) = p(t) iHy iH;
New Reachability Theorems gate synthesis (free global phase) X(1) = U(1) iHo ’ﬂj

Examples

Open vs Closed Loop

Conclusions open systems: —~ —~
state transfer | X(t) = p(t) iHy +T iH;
quantum-map synthesis X(t) = F(t) iHy +T iH;
state transfer Il X(t) = p(t) iHy iH;, T

H is Hamiltonian commutator superoperator (generating U= U(<)UJf) in Liouville space.
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Reachable Sets |: Non-Unital

Controlled Amplitude Damping Noise quant-ph/1206.4945

switchable amp-damp noise: y(t) - I with V,:=1® (J{) in

FL(p) = 3{VAVa, p}s — Vap Vi

Theorem ('woodcut’ version)

LetY , be an n—spin—% ZZ -coupled unitarily controllable
system.

Adding bang-bang switchable ((t) € [0, 1]) amp-damp
noise on 1 spin allows that any target state can be
reached from any initial state

Reachy_(po) = {all density ops.} for all pq .



Reachable Sets II: Unital
Controlled Bit Flip Noise quant-ph/1206.4945

s switchable bit-flip noise: v(t) - 'L with Vp := 1® ox/2in
asic Systems
Theory

DYNAMO Platform r[_(p) = %{ Vg Vb, p}+ — pr Vg

Applications I:
Error Correction

Applications Il:
Fixed-Point
Engineering

Theorem ('woodcut’)

romicatone Il Let ¥, be an n-spin-5 ZZ-coupled unitarily controllable
Noise Switching system.

Adding bang-bang switchable bit-flip noise on 1 spin
allows that any target state majorised by the initial state
can be reached

les

Reachs, (po) = {p|p < po} forall po.



Noise-Driven State Transfer | & |l

Transfer between Pairs of Random States arXiv:1206.4945
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Examples
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Conclusions

residual error 5F
I
o

4 10 S
0 1000 2000 3000 4000
wall time [s]

10°



Noise-Driven State Transfer lll: lon Traps
Transfer to GHZ State arXiv:1206.4945
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Engineering FX, Fy'ContrOIS, jOint (FX)Z, (Fy)z'ContrOIS, and
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Noise Switching

N Aoty Trerens m task lll: pg ~ 1 — pGgHz,) by amp-damp
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Transfer to GHZ State arXiv:1206.4945
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Barreiro,. . ., Blatt, Nature 470, 486 (2011)
Schindler,. . ., Nature Physics 9,361 (2013)



Noise-Driven State Transfer
Open Loop as Strong Closed Loop

arXiv:1206.4945
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Fixed-Point
Engineering

For state transfer, Markovian quantum maps are as
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can be replaced by open-loop control.
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Conclusions can be switched ~(t) € {0,~.} with~. > 0. If Hy is

- diagonal (Ising-ZZ type) and the only drift term, then ¥ 4

e acts transitively on the set of all density operators pos1
|

Reachy (po) = posy  for all py € posq

where the closure is understood as the limit T, — oo.
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m with Hy diagonal (Ising-ZZ), evolution remains diagonal

r(t) = {lf(”” ® (8 1 Zeﬂ ro with ¢ := =17

m undo any unwanted transfer p; <> pj lasting a total of 7 by
permuting p;; and pj after 7 := ,Yi In (M) and

piitpji
evolve under noise for remaining 7 — 7j;
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with Hy diagonal (Ising-ZZ), evolution remains diagonal

| ®0-1) 1 1—¢ . oty
r(t) = {12 ® (0 . ﬂ fo with e := ™"
undo any unwanted transfer p; <> p;i lasting a total of 7 by
permuting p; and p; after 7; := - (%ﬂﬂ*”ﬂ) and
evolve under noise for remaining 7 — 7j;

with 2"=1 — 1 switches all but one desired transfer remain;
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ity = 120 g (1 T =€) with e .= 1
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m in limit T, — oo obtain set of all diagonal density
operators A C posq;
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choose diagonal pg =: diag (1)

with Hy diagonal (Ising-ZZ), evolution remains diagonal

r(t) = {lf(”” ® (8 1 Zeﬂ ro with € := e~

can obtain any state
p(t) =diag (... [pi + pj - (1 = )l [pj - - )

in limit T+, — oo obtain set of all diagonal density
operators A C posq;

by unitary controllability get all unitary orbits Z/(A) = pos;.
O
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Eninesring Let ¥, be an n-qubit bilinear control system satisfying
Applcations Il (WH) for v = 0. Suppose the bit-flip noise amplitude can
Conclusions be switched ~(t) € {0, ~..} with~, > 0. If all drift

- components of Hy are diagonal (Ising-ZZ), then =,

Rl explores all states majorised by pg
|

Reachy, (po) = {p|p < po} forany po € pos;

where the closure is understood as the limit T, — oo.
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m to limit relaxative averaging to first two eigenvalues,
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conjugate pg with Uy := 1, ® % (1 ] )
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again choose diagonal po =: diag (1)

with Hy diagonal (Ising-ZZ), evolution remains diagonal

r(t) = {lg(n” ® % (8 tg 8 13)] ro with € := efé“’*

to limit relaxative averaging to first two eigenvalues,

11\
conjugate pg with Uy := 1, ® % (1 ] )

gives protected state pf) := Us2po U,

/ p11 0O 1 (P33 + paa P33 — pas
= ol D -
Po ( Y Pzz) 2 <033 — P44 )

P33 + P44
now relaxation acts as T-transform on pg
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m again choose diagonal py =: diag(r)

m with Hy diagonal (Ising-ZZ), evolution remains diagonal

r(t) = {lg(n” ® % (8 tg 8 13)] ro with € := efé“’*

m by permutation of such T-transforms, one can obtain any
state

. _t
p(t) =diag (..., 5[pi + pj + (i — pj) - € f%]ii’ e
aloi+ pj + (py = pi) - €727 )
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m with Hy diagonal (Ising-ZZ), evolution remains diagonal

r(t) = {lg(n” ® % (8 tg 8 13)] ro with € := efé“’*

B NB: pur < po iff prar = Dpo with doubly stochastic D
product of at most N — 1 such T-transforms
(e.g., Thm. B.6 in MARSHALL-OLKIN or Thm. 11.1.10 in BHATIA)
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again choose diagonal po =: diag (1)

with Hy diagonal (Ising-ZZ), evolution remains diagonal

r(t) = {lg(n” ® % (8 tg 8 13)] ro with € := efé“’*

NB: pur < po iff prar = Dpo with doubly stochastic D
product of at most N — 1 such T-transforms
(e.g., Thm. B.6 in MARSHALL-OLKIN or Thm. 11.1.10 in BHATIA)

in limit T+, — oo obtain set of all diagonal density
operators diag (r) < diag (rp)

by unitary controllability get all density operators p < po.
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m decouple protected states pg from Hamiltonian Hy
m to this end, observe

o/mHix g (T +iHzz) g—imHix _ g—H(T—iHzz)

m so decoupling obtained in Trotter limit

t q t ,
lim (e 2k(T+Hz) g=2g (MM )k — g=tT

Kk—o00
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Basic Systems

Theory
DYNAMO Platform m 7 -transformation is convex combination

Applications I Al + (1 — X)Q with pair transposition Q and A € [0, 1]

Error Correction

Applications Il:
Fixed-Point

Engineering . ®(n_1) 1 (1 aF 6) (1 — 6)
e [EERTUE EEH RS

Conclusions covers \ € [%, 1], while
n

Reachability R;)(t) = Hb(t) O (]l?(nidl) ® (? (1)) ) CaptureS
|

. X € [0, 3], and X = } is obtained in the limit e — 0

O
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Reachable Sets Il: Unital

Proof: further details.

one cannot go beyond states majorised by pg:
m bit-flip superoperator: doubly-stochastic

- (1+¢) 0 0 (1—¢)

—trp _ 1®(n—1 1 0 (1+¢) (1-¢) 0

e =1 ®2| o (1-9(+9 o0
(1—¢) O 0 (1+¢)
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Reachable Sets Il: Unital

Proof: further details.

one cannot go beyond states majorised by pg:
m bit-flip superoperator: doubly-stochastic

(1+¢) O 0 (1—e)
0 (1+e) (1—¢) O
0 (1—¢) (1+€) O
(1—¢) O 0 (1+¢)

iy ®(n=1) o 1
e r=1, ® 3

B bit-flip plus unitary control: cpt unital map hence also
generalised doubly-stochastic linear map ¢ in sense of
ANDO, Lin. Alg. Appl. 118 (1989) p 235 Thm. 7.1 saying

that for any hermitian A: (A) < A. -
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(1) - T with Vy = ( (- 9>) 0 € [0,1]in

Fi(p) = HV§ Vo, p}s = Vip V)
m fixed point (single qubit)
2 0\ . -
poc(0) = 71 <0 92> with § :=1 -6
m compare with canonical density operator at temperature
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new control term:

Reachable Sets Ill: Generalised

quant-ph/1206.4945

(1) - T with Vy = ( (- 9>) 0 € [0,1]in

L(p) = 3{ Vi Vo.pts — VopVj

m fixed point (single qubit)
poc(0) = 71 <%2 902> with § :=1 -6

m compare with canonical density operator at temperature
P8 = Tesh(ETD) <eﬂ0/2 e_%/2>

B so 4 relates to inverse temperature 3(0) :=

8(6) = 2artanh (527

. . s 2 . 02
m switching condition % < z—]'_j{ < %

by

kBT
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new control term: ~(t) - I, with V, := ( (1~ 9)> 0 €[0,1]in
G () = ${V) Vo, pts — Vop V)
DYNAMO Platform

Applications I:

Error Correction Theorem

Fredpoi Let ¥y be an n-qubit bilinear control system satisfying

Enineeing _ (WH) for v = 0. Suppose the V), noise amplitude can be

Notss Swiing switched ~(t) € {0,~.}. If all drift components of Hy are

Conclusions diagonal (Ising-ZZ), then ¥y gives for the thermal state
1

. po =zl

Reachabilty
|
|

Reachs,(z:1) 2 {p|p < ps}

where ps Is the purest state obtainable by partner-pairing
algorithmic cooling with bias § := zz_zz (again closure by
T, — 00).
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i Consider a system governed by X(t) = F(X, u, t).
B LD TR For u,(t) to be an optimal control steering X(0) into X(T) so
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S all times, it suffices there is
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Conclusions W a scalar Hamiltonian function (so X(t) = F(X,u,t) = 2% ),

h(P, X, u,t) := L(X,u,t)+ (A(H)|F(X,u,t)) where

o h attains its critical points for optimal controls u,(t),

ie., % —0atalmostall0 <t<T;

o X(T) unspecified implies \(T) = 0.
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Engineering ou 0
Applications Ill: .
Noise Switching NB: 6 X depends on variation of control u via X = F(X, u, t).

Conclusions

m Incorporate dependence of § X on éu as in egn. of motion by
operator-valued LAGRANGE multiplier \(t) associated with zero-cost
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for any v : [0, 00) — G being a smooth curve in S.
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Controllability in Open Systems
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Exploring Reachable Sets

IEEE TAC 57, 2050 (2012)

m closed controllable systems:
Reach po = Ou(po) := {UpoU' | U € SU(N)}

m open fully H-controllable unital systms:
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m open systems satisfying WH-condition:
parameterisation involved, key: Lie semigroups



Exploring Reachable Directions

IEEE TAC 57, 2050 (2012)

Bilinear control system: X = —(A+ Y 4;B)X

Basic Systems

Theory m satisfies WH-condition with :
DYNAMO Platform A:=H;+Tgy, B:=uHy,and 'y :=diag(1,0,1)

Applications I:
Error Correction

Applications II:
Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions




Basic Systems
Theory

DYNAMO Platform

Applications I:
Error Correction

Applications II:
Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions

Markoviantity, Divisibiliy |
Lie Semigr
GKS-Lindblad Gen.
Divisibility 11

Exploring Reachable Directions

IEEE TAC 57, 2050 (2012)

Bilinear control system: X = —(A+ Y 4;B)X

m satisfies WH-condition with :
A:=H;+Tgy, B:=uHy,and 'y :=diag(1,0,1)

m Lie wedge:

sin(0) Hy
wo = (Hy) ® —R{ conv {[cos(@)] . |:I‘F’z:| | 6 € R}
1 0




Basic Systems
Theory

DYNAMO Platform

Applications I:
Error Correction

Applications Il:
Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions

Markoviantity, Divisibiliy |
Lie Semigroups
GKS-Lindblad Gen.
Divisibility 11

Exploring Reachable Directions

IEEE TAC 57, 2050 (2012)

m satisfy WH-condition with :
A:=H;+Tgy, B:=uHy,,and 'y :=diag(1,1,2)



Exploring Reachable Directions

IEEE TAC 57, 2050 (2012)

m satisfy WH-condition with :

Basic Systems A:=H;+Tgy, B:=uHy,,and 'y :=diag(1,1,2)
Theory
DYNAMO Platform m Lie Wedge: 25sin(6) Hy

o _ 2cos(6) H.
Applicat I: N z
poplcatons wo = (Hy) @ B conv § | vanen |\l [0 e R
Applications II: (11+4cos(260))/6 To

Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions

Markoviantity, Divisibiliy |
Lie Semigroups
GKS-Lindblad Gen.
Divisibility 11



Exploring Reachable Directions
IEEE TAC 57, 2050 (2012)

Bilinear control system: X = —(A+ Y, y;B;)X

Basic Systems
Theory

m satisfies WH-condition with :
A:=H, + Ty, B:=uH,, and Iy :=diag (1,0, 1)

DYNAMO Platform

Applications I:
Error Correction

Applications Il:
Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions
|
|

ivisibility I



Exploring Reachable Directions

IEEE TAC 57, 2050 (2012)

Basic Systems
Theory

DYNAMO Platform

Applications I:
Error Correction

Bilinear control system: X = —(A+ Y, y;B;)X

m satisfies WH-condition with :
A:=H, + Ty, B:=uH,, and Iy :=diag (1,0, 1)

Applications Il m Lie Wedge:

Fixed-Point , sin(0) Hy
Engineering g = <Hy> b —Rar conv { |:COS(0):| . |:H£:| | = R}
Applications Ill: 1 r6
Noise Switching
Conclusions
where
0
H, |0 lo| q
’_ v /o 0 ._

Divisibility I




Algebraic Structure

IEEE TAC 57, 2050 (2012)

Basic Systems
Theory

DYNAMO Platform

e Non-Unital Lindblad Equation
Ehvor Gomostion with Vj := Cy + iDx and {Cx, Dk} = 0

Applications Il:
Fixed-Point

Engineering r(p) = % Z V; Vkp + kaT V-2 Vkp Vli
Applications IlI:
Noise Switching

k
2 2 :
Conclusions = (% Z ade + ade + 2i ade adgk) (p) ’
k=1

Markoviantity, Divisibility |

Lie Semigroups
GKS-Lindblad Gen.
Divisibility I



Basic Systems
Theory

DYNAMO Platform

Applications I:
Error Correction

Applications Il:
Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions

Markoviantity, Divisibiliy |
Lie Semigroups
GKS-Lindblad Gen.
Divisibility 11

Algebraic Structure

IEEE TAC 57, 2050 (2012)

Ex.: 1-qubit system gg C g C gl(4,C):
m unital single-qubit channels

do = <i&v,&ga{6—l/aa—#}+ |V # we {Xa Y, Z}>|—ie lg)g[(‘?’a}R)



Basic Systems
Theory

DYNAMO Platform

Applications I:
Error Correction

Applications Il:
Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions

Markoviantity, Divisibiliy |
Lie Semigroups
GKS-Lindblad Gen.
Divisibility 11

Algebraic Structure

IEEE TAC 57, 2050 (2012)
Ex.: 1-qubit system gg C g C gl(4,C):
m unital single-qubit channels

go ‘= <i&v,&§’ {6—”’6—#}+ |V # ne {Xa Y, Z}>|—ie i%) g[(SaR)
m non-unital single qubit channels

g:=(i6,6,,i8,,65,{64,6u}, |v# 1 e {Xy, 2} e -



Algebraic Structure

IEEE TAC 57, 2050 (2012)

Ex.: 1-qubit system gg C g C gl(4,C):

Basic Systems m unital Single'QUbit channels
Theory

DYNAMO Platform

go ‘= <i&v,&ga{6—l/aa—#}+ |V # ne {Xa Y, Z}>|—ie lg)g[(‘?’a}R)

m non-unital single qubit channels

Applications I:
Error Correction

Applications Il:
Fixed-Point A A A AD (A A

Engineering g:i= <’0'y0':;7 10y,0,, {UV70-H}+ |V # e {Xv Y, Z}>Lie .
Applications Ill: .

Noise Switching m observe g := go®sip, Where

Conclusions

is0 3
ig := (i6x67 ,Icryaz 6267 e = R

Markoviantity, Divisibiliy |
Lie Semigroups
GKS-Lindblad Gen.
Divisibility 11



Basic Systems
Theory

DYNAMO Platform

Applications I:
Error Correction

Applications Il:
Fixed-Point
Engineering

Applications Ill:
Noise Switching

Conclusions

Markoviantity, Divisibiliy |
Lie Semigroups
GKS-Lindblad Gen.
Divisibility 11

Algebraic Structure

IEEE TAC 57, 2050 (2012)

Ex.: 1-qubit system gg C g C gl(4,C):
m unital single-qubit channels
go ‘= <i&v>&§’ {6—”’6—#}+ |V # ne {Xa Y, Z}>|—ie i%) g[(SaR)
m non-unital single qubit channels
g:= <ia’y6;7i6’u76’5a {&V7&H}+ |V 7é ne {Xv}/7 Z}>Lie .
m observe g := goPsig, Where

iso 3
ig i= </UXU 7’0y02 6265 >L|e =R

by [90,80] € g0
[90,i0] € 1o
[lo,i)] = 0€ip



Exploring Reachable Sets

IEEE TAC 57, 2050 (2012)

Basic Systems
Theory

it IO m closed controllable systems:
e Reach po = Ou(po) = {UpoU' | U € SU(N)}
Applications Il:

Fixed-Point

Engineering m open fully H-controllable unital systms:
Applications Ill: Reach £0o - {p € Posq ’p‘<,00}

Noise Switching

Conclusions

m open systems satisfying WH-condition:
Reach pg = Svec pg where
S ~ erefe—1 ... eA with A A . A EW

Markoviantity, Divisibility |
Lie Semigroups
GKS-Lindblad Gen.

Divisibility I



	Basics
	Concept of a Unified Platform
	NV Centres
	Controlling Markovian Open Systms
	Controlling Non-Markovian Open Systms
	Controlling Open Systms

	Fixed-Point Engineering
	Graph States
	Algebraic Structure

	Noise Control
	Examples

	Conclusions
	Proofs ReachOpen
	Pontryagin Principle
	Lie Semigroups vs Markovian Channels
	Lie Semigroup Theory
	GKS-Lindblad Operators as Lie Wedge


