XS-Stabilizer

Xiaotong Ni
joint work with Buerschaper, Van den Nest

Definition

- Pauli-S group: \(P_n^S = \langle \alpha, X, S \rangle^\otimes n \)

\[
\alpha = \sqrt{i} \quad S = \text{diag}(1, i) \quad S^{-1}XS = -iXZ
\]

- Given \(G = \langle g_1, \ldots, g_m \rangle \subset P_n^S \)

We call a state \(|\psi\rangle \) XS-stabilizer state if (uniquely)

\[
g_j |\psi\rangle = |\psi\rangle
\]

When not unique, we call it XS-stabilizer code
Outline

- Operator picture
- State picture
Operator picture
Starting point of Pauli stabilizer

- Either commute or anti-commute
- Each generator evenly split the Hilbert space
- Commutativity allows consecutively splitting
Example

$P(X \otimes S)$ is Hermitian

$X \otimes S$

$P \quad (X \otimes S)^2 = I \otimes Z$
Example

\[i^3 S \otimes S \otimes S \]

Only one of \(x_1, x_2, x_3 \) is equal to 1

(Positive) 1-in-3 SAT problem

NP-Complete
Two operators

1. Commute and independent

2. Commute but not fully independent

\[g_1 = X \otimes S \otimes I \]
\[g_2 = I \otimes S \otimes X \]
\[g_1^2 = I \otimes Z \otimes I = g_2^2 \]
Two operators

3. Partially commute

\[g_1 = X \otimes X \otimes S \otimes S \quad \rightarrow \quad P_1 \]
\[g_2 = S \otimes S \otimes X \otimes X \quad \rightarrow \quad P_2 \]

\[g_1 g_2 g_1^{-1} g_2^{-1} = Z \otimes Z \otimes Z \otimes Z \]

\[P_{12} = \frac{1}{2} (1 + Z \otimes Z \otimes Z \otimes Z) \]
Commuting projectors

\[g_1 |\psi\rangle = g_2 |\psi\rangle = |\psi\rangle \]

\[P_1 P_{12} |\psi\rangle = P_2 P_{12} |\psi\rangle = P_{12} |\psi\rangle = |\psi\rangle \]
Find codeword state

• Given $G = \langle g_1, \ldots, g_m \rangle \subset P_n^s$, define diagonal subgroup as G_D.

• We can construct a codeword state $|\psi_x\rangle$, if we can find a computational basis $|x\rangle$ stabilized by G_D.

• When G_D is generated by Z-type operators, this procedure is efficient.
Diagonal subgroup

Each element of G has the form: $\mathcal{Z} g_1^{x_1} \cdots g_m^{x_m}$, where \mathcal{Z} is generated by \{g_j^2\} \cup \{g_j g_k g_j^{-1} g_k^{-1}\}

So we can write down a set of generators of G_D by using linear algebra.
Operator picture

• Properties of operators
• Computational complexity
• Equivalent commuting projectors
• Find code states
The state picture
The state picture

- Concrete
- Easiest way to utilize the uniqueness condition
- (Innsbruck-Munich influence)
Example

\[g_1 = X \otimes S^3 \otimes S^3 \otimes S \otimes X \otimes X, \]
\[g_2 = S^3 \otimes X \otimes S^3 \otimes X \otimes S \otimes X, \]
\[g_3 = S^3 \otimes S^3 \otimes X \otimes X \otimes X \otimes S. \]

\[
\sum_{x_j=0}^{1} (-1)^{x_1x_2x_3} |x_1, x_2, x_3, x_2 \oplus x_3, x_1 \oplus x_3, x_1 \oplus x_2\rangle
\]
Mechanism

\[\mathbb{Z} \otimes \mathbb{Z} \otimes \mathbb{Z} \]

\[\sum_{x_1, x_2} |x_1, x_2, x_1 \oplus x_2 \rangle \]
Mechanism

\[X \otimes Z \]

\[|0, x_2\rangle \leftrightarrow (-1)^{x_2} |1, x_2\rangle \]

\[\sum (-1)^{x_1 x_2} |x_1, x_2\rangle \]
Mechanism

\[X \otimes S \otimes \cdots \]

\[|0, x_2 \oplus x_3, \cdots \rangle \leftrightarrow i^{x_2+x_3} (-1)^{x_2 x_3} |1, x_2 \oplus x_3, \cdots \rangle \]

\[\sum i^{x_1 (x_2 + x_3)} (-1)^{x_1 x_2 x_3} |x_1, x_2 \oplus x_3, \cdots \rangle \]

Bravyi, Haah 2012
Twisted quantum double

- Double semion: \[\sum_{x \text{ is close loops}} (-1)^{\text{number of loops}} |x\rangle \]
Twisted quantum double

- twisted double on \mathbb{Z}_2^n

Flip a (plaquette) loop, add a quadratic phase

Hu, Wan, Wu 2012
Mechanism

\[X \otimes S \otimes \cdots \]

\[|0, x_2 \oplus x_3, \cdots \rangle \leftrightarrow i^{x_2+x_3} (-1)^{x_2 x_3} |1, x_2 \oplus x_3, \cdots \rangle \]

\[\sum \left(i^{x_1(x_2+x_3)} (-1)^{x_1 x_2 x_3} |x_1, x_2 \oplus x_3, \cdots \rangle \right) \]
S-CZ gadget

\[\sum_{x_1, x_2} |x_1, x_2, x_1 \oplus x_2\rangle \]

\[S^{-1} \otimes S^{-1} \otimes S = CZ_{12} \otimes I \]
Why quadratic?

If we have \(X \otimes \sqrt{S} \otimes \cdots \)

\[(X \otimes \sqrt{S} \otimes \cdots)^2 = I \otimes S \otimes \cdots\]

Hard to make it compatible with the string intuition
Discussion

- Should we add CZ to the Pauli-S group?
- There’s some tradeoff. Choose what is the most convenient for you
Other funny facts

• XS states have very similar entanglement properties compared to Pauli states (~Flammia, Hamma, Hughes, Wen)

• Double semion (and probably other twisted double model) have transversal logical-X gate
Some error deserves not to be corrected

Thanks